• Title/Summary/Keyword: 비선형 지반

Search Result 557, Processing Time 0.022 seconds

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

Development of Analytical Method of Piled-Raft Foundation Considering Nonlinear Behavior of Pile (말뚝의 비선형거동이 고려된 전면지지 말뚝기초 해석기법의 개발)

  • Park, Hyun-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.17-24
    • /
    • 2008
  • In this study, two-dimensional finite element method has been developed to simply consider the nonlinear load-settlement behavior of piled raft foundation subjected to vertical loads. The raft is modeled as the plate finite element based on Mindline's theory and the pile is modeled as the proposed simple pile model that is easy to consider the complex nonlinear load-settlement behavior between pile and soil. The developed numerical method has been compared with the settlement data of lab-scaled experiment and numerical solutions to verify that the developed numerical method shows satisfactory prediction for the nonlinear load-settlement of piled raft foundation.

Response Spectrum Analysis-Induced Limit Acceleration of Soil Pile Systems (지반-기초말뚝 상호작용을 고려한 응답스팩트럼의 적용 한계가속도)

  • Shin, Jong-young;Song, Su-min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.7-22
    • /
    • 2023
  • In this study, the limit range of input acceleration was investigated based on time domain and response spectrum analyses by considering the relative density, groundwater depth, and soil type. Special attention was paid to the input acceleration and shear modulus of soil, which affect pile behavior. The surrounding soil was identified as an elastoplastic material and subjected to FLAC3D analysis using the Mohr-Coulomb and Finn models as well as FB-Multiplier analysis using a nonlinear p-y curve for soil spring. Based on the analyses, the limit range of acceleration on the pile is much higher for SP soil than for SM soil, and the groundwater level tends to reduce the limit range of input acceleration, irrespective of soil conditions. The limit range of acceleration was mainly affected by the shear modulus. The limit range of acceleration with nonlinear soil behavior is proportional to the relative density of the surrounding soil.

Nonlinear Three-dimensional Analysis of Piled Piers Considering Coupled Cap Rigidities (교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.19-30
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method was developed by considering complex behavior of sub-structures (pile-soil-cap) which included soil nonlinearity and the behavior of super-structure (pier). As an intermediate analysis method between FBPier 3.0 and Group 0.0, it took advantages of each method. Among the components of a pile group, individual piles were modeled with stiffness matrices of pile heads and soils with nonlinear load-transfer curves (t-z, q-z and p-y curves). A pile cap was modeled with modified four-node flat shell elements and a pier with three-dimensional beam element, so that a unified analysis could be possible. A nonlinear analysis method was proposed in this study with a mixed incremental and iteration techniques. The proposed method for a pile group subjected to axial and lateral loads was compared with othe. analytical methods (i.e., Group 6.0 and FBPier 3.0). It was found that the proposed method could predict the complex behavior of a pile group well, even though piles were modelled simply in this study by using pile head stiffness matrices which were different from the method introduced in FBPier 3.0.

Layer Interface and Approximated Nonlinear Analysis Method for Consolidation Prediction (압밀현상 예측을 위한 경계면 및 근사 비선형 해석기법)

  • Lee, Kyuhwan;Jeon, Jesung;Kim, Kiyoung;Jung, Daeesuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.37-43
    • /
    • 2007
  • The interface layer having different consolidation properties and nonlinear material function with permeability needs to be considered to predict consolidation behavior. In this study, interface equation between different layers has been derived and then applied to existing finite difference scheme for conducting consolidation analysis. These results have been compared with those by conventional method in which different layers are converted to single layer having conversion value of properties. Also, although the conventional consoilidation analysis is used to consider non-linearity of the permeability with effective stress, an approximated nonlinear method as a function of consoilidation coefficient with effective stress have been developed and applied to the consoilidation analysis for various cases.

  • PDF

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

Effect of Lateral Pile Rigidity of Offshore Drilled Shafts by Developing p-y Curves in Marine Clay (해상 현장타설 말뚝의 p-y 곡선 산정을 통한 횡방향 상대 강성 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Kim, Jeong-Hwan;Lee, Yang-Gu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.37-51
    • /
    • 2007
  • In this study, pile load tests have been carried out to develop new P-y curves and then, to investigate the effects of pile rigidities on laterally loaded offshore drilled shafts in Incheon marine clay. This paper consists mainly of two parts: the first part, performance of a series of lateral load tests on small- and full-scale piles under one- and two-way loadings and the second part, comparison between the measured and predicted results by using O'Neill's and Matlock's clay models. Based on the results obtained, it is shown that relatively good agreements in bending moments and lateral displacements were obtained between the measured results using calculated P-y curves and predicted ones by O'Neill's and Matlock's clay models. The cases were considered with varying rigidity factors based on pile diameter, length and subgrade soil reaction. Through comparisons, it is found that soil P-y curve influences highly the behavior of flexible pile rather than that of rigid pile.

Optimization Techniques for Soil Parameters used in Axisymmetric Nonlinear Consolidation Analysis (축대칭 비선형 압밀해석을 위한 지반정수값의 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-144
    • /
    • 1996
  • In order to accelerate the rate of consolidation settlement and to gain a required shear strength for a given soft clay deposit, the preloadina technique combined with a vertical drainage system has been widely applied. Even if a sophisticated numerical analysis technique is applied to solve the consolidation behavior of drainage-installed soft deposits, the actual field behavior is often different from the behavior predicted in the design state due to several uncertainties involved in soil properties, numerical modelling, and measuring system. In this paper, two back-analysis schemes such hs simplex and BFGS methods have been implemented in an a Bisymmetric consolidation program, AXICON which considers the variation of compressibility and permeability during the consolidation process. Utilizing the program, one might be able to appropriately predict the subsequent consolidation behavior from the measured data in an early stage of consolidation of drainage-installed soft deposits.

  • PDF