• Title/Summary/Keyword: 비선형 조석

Search Result 56, Processing Time 0.021 seconds

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.

Typhoon-Surge Characteristics and the Highest High Water Levels at the Western Coast (서해안의 태풍해일특성과 고극조위)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.50-61
    • /
    • 2019
  • The aspects of typhoon-induced surges were classified into three types at the Western coast, and their characteristics were examined. The typhoons OLGA (9907) and KOMPASU (1007) were the representative steep types. As they pass close to the coasts with fast translation velocity, the time of maximum surge is unrelated to tidal phase. However, typhoons PRAPIROON (0012) and BOLAVEN (1215) were the representative mild types, which pass at a long distance to the coasts with slow translation velocity, and were characterized by having maximum surge time is near low tide. Meanwhile, typhoons MUIFA (1109) and WINNIE (9713) can be classified into mild types, but they do not show the characteristics of the mild type. Thus they are classified into propagative type, which are propagated from the outside. Analyzing the annual highest high water level data, the highest water level ever had been recorded when the WINNIE (9713) had attacked. At that time, severe astronomical tide condition overlapped modest surge. Therefore, if severe astronomical tide encounter severe surge in the future, tremendous water level may be formed with very small probability. However, considering that most of the huge typhoons are mild type, time of maximum surge tends to occur at low tide. In case of estimating the extreme water level by a numerical simulation, it is necessary not only to apply various tide conditions and accompanying tide-modulated surge, but also to scrutinize typhoon parameters such as translation velocity and so on.

Experimental Study on a Dolphin-Fender Mooring System for Pontoon-Type Structure (초대형 부유식 구조물의 돌핀-펜더계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Cho, Seok-Kyu;Hong, Sa-Young;Kim, Young-Shik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.43-49
    • /
    • 2005
  • in this paper a dolphin-fender moored pontoon-type floating structure in shallow water depth is studied focusing on mooring force. The pontoon-type floating structure is 500m long, 300m wide. The structure has partially non-uniform drafts of 2.0m and 3.0m. The employed mooring system is a guyed frame type dolphin-fender system. The 1/125 scale model fender system is made of rubber tube to have hi-linear load deflection characteristics. A series of model tests has been conducted focusing on motion and fender force responses in regular and irregular waves at KRISO's ocean engineering basin Non-linear numerical simulation of fender reaction force has been carried out and the results are compared with those of model tests. The simulated rigid body motion and mooring forces also have been compared with the test results.

Examination of Seismic Performance for Structure with Seismic Members made by High Strength Steel (고강도강 내진성능 향상부재를 적용한 건물 성능 비교)

  • Kim, Moonjeong;Ha, Tae Uk;Cho, Sukhee
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.281-288
    • /
    • 2015
  • Seismic members like damper do not have any treatment of preventing story stiffness reduction after elastic yielding of stories causing story collapse. This paper suggests a method able to prevent story stiffness reduction using high-strength steel. This paper suggests these also : (1) High-strength steel stud column reinforcing story stiffness reduction until story drift 0.02rad can be designed in small area without adjusting layout. (2) Suggested seismic member installing at lowest level shows effects to preventing deformation concentration under huge seismic waves.

Development of water level-runoff relationship curve by separating water level time series in tidal river (감조 하천 수위 자료 분리를 통한 수위-유량 관계 곡선식 개발)

  • Lee, Myung Jin;Yoo, Young Hun;Lee, ChoongKe;Kim, Hung Soo;Kim, Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.100-100
    • /
    • 2020
  • 감조하천은 일반하천과 달리 다양한 수문 요소에 영향을 받아 비선형적인 수문 특성을 보이고 있기 때문에 수위-유량 관계곡선식이 개발되어 있지 않다. 본 연구에서는 조위의 영향을 받는 감조하천에서 강우의 영향으로 인한 수위-유량 관계곡선식의 작성 방법론을 제안하고자 하였다. 이를 위해 울산 수위시계열을 wavelet 분석, curve fitting, high pass filter 방법을 이용하여 4가지의 성분(조석 성분, 파고 성분, 강우-유출 성분, 잡음 성분)으로 분리하고, 분포형 모형인 GRM 모형을 통해 유출량을 산정하였다. 모의 유출량과 강우-유출 성분을 이용하여 수위-유량 관계곡선식을 개발하고, 모의 유출량에 따른 수위를 추정하였다. 나머지 3가지 성분과 합하여 통합 수위를 산정하고 관측 유량과 비교한 결과 오차가 약 10% 이내로 본 방법론이 적용성이 있음을 확인하였다. 본 연구결과를 활용한다면 홍수기에 감조하천에서 수위를 정확히 예측하는데 기여할 수 있을 것으로 판단된다.

  • PDF

Study on Structural Analysis and Manufacturing of Polyethylene Canoes (폴리에틸렌 카누의 구조해석과 제조에 관한 연구)

  • Park, Chan-Kyun;Kim, Min-Gun;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Canoes are usually made from wood or FRP. However, today environment-friendly materials are preferred, and hulls made of FRP are prohibited in some countries. Polyethylene can be recycled and so is suitable for synthetic canoe construction. We used 3D Boat-Design to determine the hydrostatic properties of the canoe. Flow-structure coupled analysis was performed using ANSYS Workbench R12.1. The hull pressure and passenger weight were considered as canoe loading factors. The key parameters for the canoe are the design variables. The constraints are as follows: (1) The maximum stress must not exceed 50% of the polyethylene yield stress; and (2) the canoe weight must not exceed 50 kg. The optimal structural conditions were obtained by the response optimization process. The components of the canoe hull were manufactured from polyethylene pipes and joined by thermal fusion methods. Tests showed that the polyethylene canoe had better performance than existing canoes.

Performance Based Design of Coupling Beam Considering Probability Distribution of Flexural and Shear Strength (휨강도와 전단강도의 확률분포를 고려한 연결보의 성능기반설계)

  • Kim, Yun-Gon;Cho, Suk-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • In this paper, performance based design of coupling beam using non-linear static analysis is proposed considering probability distribution of flexural and shear strength in order to develop flexural hinge. This method considers post-yielding behavior of coupling beam and stress redistribution of system. It can verify the reduced effective stiffness to meet the current design requirement based on linear analysis. It also evaluates the lateral displacement under service load (un-factored wind load) properly. In addition, it can optimize the coupled shear wall system by taking stress redistribution between members into account. For a simplified 30-story building, non-linear static (push-over) analysis was performed and the structural behavior was checked at performance point and several displacement steps. Furthermore, system behavior according to the amount of reinforcement and depth of coupling beam was explored and compared each other.

On reducing the computing time of EFDC hydrodynamic model (EFDC 해수유동모형의 계산시간 효율화)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • The EFDC model has been simplified to enhance the computing performance in hydrodynamic modeling. Water quality module and unnecessary conditional statements were deleted in subroutine list and memory allocation. The performance of the enhanced model (EFDC-E) was checked by applying EFDC and EFDC-E models to simulating the tidal flow in Mokpo coastal zone. Both two-dimensional models and threedimensional models have been applied and compared. Three-dimensional models showed better simulation results agreeing with observed currents than two-dimensional models. The simulation results of EFDC-E model gave good results agreeing with the simulation results of EFDC model and the observed data. The computing speed of EFDC-E model is improved 3 times faster than that of EFDC model in modeling hydrodynamic flow for real time of 3 days in both 2-dimensional modeling and 3-dimensional modeling. The EFDC-E model can be used widely for hydrodynamic modeling because of improved simulation speed.

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Estimates of Flushing Time in a Bay using the SCS Curve Number Method (SCS 유출곡선지수법(流出曲線指數法)을 이용한 만내(灣內) 담수(淡水) 교체시간(交替時間)의 추정(推定))

  • Kim, Jong Hwa;Chang, Sun Duck;Song, Hyun Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1453-1463
    • /
    • 1994
  • The SCS Curve Number(CN) method has become widely accepted as a procedure of estimating stormflow volumes for design and natural events in small watersheds. The applicability of this method for calculating the flushing time was evaluated as compared with the net volume transport(NVT) method in Masan Bay, Korea. It is shown that the flushing time using the CN method ranged from 10.9 to 15.3 days under the well mixed condition, that the time using the NVT method was 13.9 days averaged over 6 days of field data. These results were revealed that two methods calculated the approximate times as shown above. The relationships between the run-off, Qr, and the flushing time, t, are expressed as the following forms. $t_1=228.79Q_r^{-0.9996}$ in case of well mixed condition, (1) $t_2=131.06Q_r^{-1.0}$ in case of two layered model. (2) Those empirical expressions are represented that the relationships between Q and t are nonlinear as those as Bumpus obtained in Boston Inner Harbour. Therefore, the CN method will permit calculation of the flushing time for any given bay to be unexpected as water balance under the condition of short-time (0.5 day) data, instead of NVT method based on the long-time (at least 3 days over) data.

  • PDF