• Title/Summary/Keyword: 비선형 역산

Search Result 47, Processing Time 0.023 seconds

Crustal Structure of the Korean Peninsula from Broadband Teleseismic Records by Using Receiver Function (광대역 원격지진의 수신함수를 이용한 한반도 지각구조)

  • Kim, So Gu;Lee, Seoung Kyu;Jun, Myung soon;Kang, Ik Bum
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Broadband receiver functions are developed from teleseismic P waveforms recorded at Wonju (KSRS), Inchon (IRIS), and Pohang (PHN), and are analyzed to examine the crustal structure beneath the three stations. The teleseismic receiver functions are inverted in the time domain to the vertical P wave velocity structure beneath the stations. Clear P-to-S converted phases from the Moho interface are observed in teleseismic seismograms recorded at the three stations. We estimated the crustal velocity structures beneath the stations using the receiver function inversion. The general features of inversion results are as follows: (1) For Pohang station, there is a high velocity gradient at a 4~5 km deep for SE and NW back azimuth and a low velocity zone at around 10 km deep. The Moho depth is 28 km for NW direction. (2) The shallow crustal structure beneath Wonju station is somewhat complex and there is a high-velocity zone ($V_p{\simeq}6.8km/sec$) at 3 to 4 km deep. The average crustal thickness is 33 km, and a transition zone exists at a 30~33 km deep of lower crust, of which velocity is abruptly changed 6.4 to 7.9 km/sec. (3) For Inchon station, the crustal velocity gradient monotonously increases up to the Moho discontinuity and the velocity is abruptly changed from 6.2 km/sec to 7.9 km/sec at 29 km deep.

  • PDF

A Study of the Effect of Grouting Region on the Solution of Line Source Analysis (그라우팅 영역이 선형열원 해석에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.143-150
    • /
    • 2010
  • Line source method of borehole system assumes the entire surrounding medium is uniform. However, thermal properties of grouting region are considerably different from those of surrounding soil. In this study we investigate the effect of grouting materials on the solution of line source method with the aid of numerical analysis. This numerical model generates the temperature of borehole fluid with which line source solution can be obtained. Then this solution can be compared with input condition of numerical model. The results of this comparison show that thermal conductivity and borehole thermal resistance of line source solution are approximately 86% and 91% of the input condition of numerical model. Chart method is developed in this study to find the numerical input conditions (thermal conductivity and borehole thermal resistance) from the line source solution. Thermal response test of test borehole is conducted, the results of which are approximately consistent with the Chart method. Thermal property changes of grouting materials on the line source solution are also examined.

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

A Novel Carrier Leakage Suppression Scheme for UHF RFID Reader (UHF 대역 RFID 리더 반송파 누설 억압 연구)

  • Jung, Jae-Young;Park, Chan-Won;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.489-499
    • /
    • 2011
  • RFID technologies, which allow collecting, storing, processing, and tracking information by wirelessly recognizing the inherent ID of object through an attached electronic tag, have a variety of application areas. This paper presents a novel carrier leakage suppression RF(CLS-RF) front-end for ultra-high-frequency RF identification reader. The proposed reader CLS-RF front-end structure generates the carrier leakage replica through the nonlinear path that contains limiter. The limiting function only preserves the frequency and phase information of the leakage signal and rejects the amplitude modulated tag signal in the envelope. The carrier leakage replica is then injected into the linear path that contains phase shifter. Therefore, the carrier leakage signal is effectively cancelled out, while not affecting the gain of the desired tag backscattering signal. We experimentally confirm that the prototype shows a significant improvement in the leakage to signal ratio by up to 36 dB in 910 MHz, which is consistent with our simulation results.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions

Geostatistical Integration of MT and Borehole Data for RMR Evaluation (암반등급 평가를 위한 MT와 시추공 자료의 지구통계학적 복합해석)

  • Oh, Seok-Hoon;Chung, Ho-Joon;Lee, Duk-Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 2004
  • The geostatistical approach was applied to integrate MT (Magneto-telluric) resistivity data and borehole information for the spatial RMR (Rock Mass Rating) evaluation. Generally, resistivity of the subsurface is believed to be positively related to the RMR, thus the resistivity and borehole RMR information was combined in a geostatistical approach. To relate the two different sets of data, we take the MT resistivity data as secondary information and estimate the RMR mean values at unsampled points by identification of the resistivity to the borehole data. Two types of approach are performed for the estimation of RMR mean values. Then the residuals of the RMR values around the borehole sites are geostatistically modeled to infer the spatial structure of difference between real RMR values and estimated mean values. Finally, this geostatistical estimation is added to the previous means. The result applied to a real situation shows prominent improvements to reflect the subsurface structure and spatial resolution of RMR information.

Performance Test of Hypocenter Determination Methods under the Assumption of Inaccurate Velocity Models: A case of surface microseismic monitoring (부정확한 속도 모델을 가정한 진원 결정 방법의 성능평가: 지표면 미소지진 모니터링 사례)

  • Woo, Jeong-Ung;Rhie, Junkee;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The hypocenter distribution of microseismic events generated by hydraulic fracturing for shale gas development provides essential information for understanding characteristics of fracture network. In this study, we evaluate how inaccurate velocity models influence the inversion results of two widely used location programs, hypoellipse and hypoDD, which are developed based on an iterative linear inversion. We assume that 98 stations are densely located inside the circle with a radius of 4 km and 5 artificial hypocenter sets (S0 ~ S4) are located from the center of the network to the south with 1 km interval. Each hypocenter set contains 25 events placed on the plane. To quantify accuracies of the inversion results, we defined 6 parameters: difference between average hypocenters of assumed and inverted locations, $d_1$; ratio of assumed and inverted areas estimated by hypocenters, r; difference between dip of the reference plane and the best fitting plane for determined hypocenters, ${\theta}$; difference between strike of the reference plane and the best fitting plane for determined hypocenters, ${\phi}$; root-mean-square distance between hypocenters and the best fitting plane, $d_2$; root-mean-square error in horizontal direction on the best fitting plane, $d_3$. Synthetic travel times are calculated for the reference model having 1D layered structure and the inaccurate velocity model for the inversion is constructed by using normal distribution with standard deviations of 0.1, 0.2, and 0.3 km/s, respectively, with respect to the reference model. The parameters $d_1$, r, ${\theta}$, and $d_2$ show positive correlation with the level of velocity perturbations, but the others are not sensitive to the perturbations except S4, which is located at the outer boundary of the network. In cases of S0, S1, S2, and S3, hypoellipse and hypoDD provide similar results for $d_1$. However, for other parameters, hypoDD shows much better results and errors of locations can be reduced by about several meters regardless of the level of perturbations. In light of the purpose to understand the characteristics of hydraulic fracturing, $1{\sigma}$ error of velocity structure should be under 0.2 km/s in hypoellipse and 0.3 km/s in hypoDD.

Hypocentral Depth Determination of Gyeongju Earthquake Aftershock Sequence (경주 지진 여진의 진원 깊이 연구)

  • Chung, Tae Woong;Iqbal, Muhammad Zafar
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Hypocentral depths of 103 aftershocks of the 12 September 2016 Gyeongju earthquake (ML 5.8) were inverted by epicentral relocation, using HYPO71 and HYPOINVERSE. From the comparison of seven models that reflect regional velocity structure in the southern Korean Peninsula, HYPO71 with linear weighting over the whole range showed less residuals than HYPOINVERSE for the model near the epicenter. Less uncertainties of focal depths were observed for the events with large magnitude and short range of the closest S-phase distance.

A Study on the Geophysical Characteristics and Geological Structure of the Northeastern Part of the Ulleung Basin in the East Sea (동해 울릉분지 북동부지역의 지구물리학적 특성 및 지구조 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.625-636
    • /
    • 2010
  • The geophysical characteristics and geological structure of the northeastern part of the Ulleung Basin were investigated from interpretation of geophysical data including gravity, magnetic, bathymetry data, and seismic data. Relative correction was applied to reduce errors between sets of gravity and magnetic data, obtained at different times and by different equipments. The northeastern margin of the Ulleung Basin is characterized by complicated morphology consisting of volcanic islands (Ulleungdo and Dokdo), the Dokdo seamounts, and a deep pathway (Korea Gap) with the maximum depth of -2500 m. Free-air anomalies generally reflect the topography effect. There are high anomalies over the volcanic islands and the Dokdo seamounts. Except local anomalous zones of volcanic edifices, the gradual increasing of the Bouguer anomalies from the Oki Bank toward the Ulleung Basin and the Korea Gap is related to higher mantle level and denser crust in the central of the Ulleung Basin. Complicated magnetic anomalies in the study area occur over volcanic islands and seamounts. The power spectrum analysis of the Bouguer anomalies indicates that the depth to the averaged Moho discontinuity is -16.1 km. The inversion of the Bouguer anomaly shows that the Moho depth under the Korea Gap is about -16~17 km and the Moho depths towards the Oki Bank and the northwestern part of Ulleung Island are gradually deeper. The inversion result suggests that the crust of the Ulleung Basin is thicker than normal oceanic crusts. The result of 20 gravity modeling is in good agreement with the results of the power spectrum analysis and the inversion of the Bouguer anomaly. Except the volcanic edifices, the main pattern of magnetization distribution shows lineation in NE-SW. The inversion results, the 2D gravity modeling, and the magnetization distribution support possible NE-SW spreading of the Ulleung Basin proposed by other papers.

A Study on Seismic Source and Propagntion Characteristics using a Series of 12 Fukuoka Earthquakes (후쿠오카 지역에서 발생한 12개 지진의 지진원 밑 지진파 감쇠값에 관한 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.89-97
    • /
    • 2007
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 12 Fukuoka region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy in fiequency domain. Average stress drop of 12 events and local attenuation parameter $\kappa$ under seismic stations were estimated to about 79.2-bar and 0.043 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 248.1 and 0.558 respectively. Low value of Qo seems to caused by inhomogeneous tectonic characteristics between Japan island and southern Korean peninsula. $\kappa$ values are much higher than that characterizing EUS (Eastern United States) region, and nearly similar to that of WUS (Western Waited States) region. If the informations on site specific amplification of all the seismic stations are known, $\kappa$ values can be estimated more precisely. All the values including the seismic sources and the site and crustal scale propagation characteristics can be used as seismic design parameters.