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Geostatistical Integration of MT and Borehole Data for RMR Evaluation
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Abstract : The geostatistical approach was applied to integrate MT (Magneto-telluric) resistivity data and borehole
information for the spatial RMR (Rock Mass Rating) evaluation. Generally, resistivity of the subsurface is believed to
be positively related to the RMR, thus the resistivity and borehole RMR information was combined in a geostatistical
approach. To relate the two different sets of data, we take the MT resistivity data as secondary information and estimate
the RMR mean values at unsampled points by identification of the resistivity to the borehole data. Two types of approach
are performed for the estimation of RMR mean values. Then the residuals of the RMR values around the borchole sites
are geostatistically modeled to infer the spatial structure of difference between real RMR values and estimated mean
values. Finally, this geostatistical estimation is added to the previous means. The result applied to a real situation shows

prominent improvements to reflect the subsurface structure and spatial resolution of RMR information.
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Introduction

RMR (Rock Mass Rating) is a very significant criterion to
evaluate the stability of an area of interest for the planning
and construction of large-scale engineering works like tun-
neling. In most cases, the RMR information is given only
around the borehole sites, so the spatial information for
RMR tends to be deficient. Geostatistics is largely based
upon the random function model, whereby the set of
unknown values is regarded as a set of spatially dependent
random variables. Such presentation reflects the imperfect
knowledge of the unsampled value z(u) and more generally,
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of the distribution of z within the area (Goovaerts, 1997).
The most frequent use of geostatistics for evaluation of
RMR simply applies the Kriging technique to the 1-D bore-
hole RMR data (Oztiirk, 2002, Ryu et al., 2003) to obtain
a 2-D distribution of RMR values, which is dependent on
the borehole RMR data alone. However, an estimation that
depends only on spatially limited information may make
that the interpreter misunderstands the situation or simplify
it by exaggeration. Therefore, it is very natural to devise a
combined interpretation between 1-D borehole data, which
includes direct RMR information and resistivity data avail-
able from geophysical explorations like MT or DC (Direct
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current) surveys. The resistivity information generally reflects
the subsurface structure well and is believed to be positively
related to the RMR. To understand the degree of relation
between the resistivity and RMR value, various statistical
aspects are considered.

This study starts with inferring the similarity between the
resistivity and RMR values around the borehole site to
obtain a correlation trend for two types of information by
simple regression and nonlinear transform. Geostatistical
spatial modeling is then applied to the residual that is the
difference between observed RMR values and inferred trend
of RMR obtained by resistivity from the MT inversion
result. Then the spatial-modeling result is added to the pre-
vious trend model to obtain a final RMR distribution map,
reflecting subsurface geophysical characteristics and bore-
hole information.

Application of this algorithm to a field site was performed
at a mountainous area planned for a large-scale tunneling
construction. The resistivity data inverted from MT explora-
tion serve as secondary information of inferring primary
RMR values outside the borehole sites. The identification of
a relation between resistivity and RMR is performed by
trend modeling, using two different approaches, and then
geostatistical modeling is applied for the residuals.

Geology and plan of tunnels of study area

The objective of the project for the study area is to make
a construction plan for an approximately 2-km long tunnel
for a motorway through a rugged mountain with a 200-m
depth at the center of the tunnel. Previous geological sur-
veys for the project reported that the rocks are granite and
andesite, but some weathered rocks are also found at the top
and slopes. Fig. 1 shows the lineament obtained from visual
interpretation of remote sensing images of the plan map of
the tunnel. Three significant lineaments cross the target area

Fig. 1. The lineament obtained from visual interpretation of
remote sensing image on the plan map of tunnel. The white bars
indicate the tunnel area.

and these seem to be related to low RMR values and resis-
tivity.

RMR frequency

Number of Data 469

_ mean 79.89
std.dev. 17.02

0.160 cosf.ofvar Q.21

maximum 99.52
upper quartile 95.05
median 85.00
0.120_ lower quartile 68.23
minimum 27.00

Frequency

30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Fig. 2. Histogram showing the distribution of all RMR values
directly measured from borehole sites.
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Fig. 3. Distribution of borehole sites and their drilling depths. A total of 10 borehole sites are drilled.
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Fig. 4. Estimated RMR distribution based only on the RMR values observed at each borehole by Kriging method.
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Fig. 5. Distribution of resistivity information calculated from 1-D MT soundings. The measurement was taken at every 50 m, following

the level site.

RMR values at borehole sites

Fig. 2 is a histogram showing the distribution of RMR
values directly measured from borehole sites. The RMR val-
ues are evaluated from a total of 469 points from 10 bore-
hole sites, and Fig. 3 shows the position of borehole sites
and the drilling depth. The deepest drilling borehole is at x
=4610 with a drilling depth of about 350 m and the most
shallow hole is at x=15720. As seen in the Fig. 2, three
quarters of the RMR values are greater than 68, and seem
to be somewhat fresh rocks. However, the remainder shows

a wide range of RMR values lower than 68 and most of
them seem to be moderately or slightly weathered rock.

Fig. 4 is an estimated RMR distribution based only on the
RMR values observed at each borehole obtained by using
Kriging technique. Due to the spatial limit of information,
the distribution is very simple and shows some lack of res-
olution in the horizontal direction.

Geophysical investigation MT exploration
The MT sounding was conducted at every 50 m, keeping
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Fig. 6. Resistivity structure of the study area from Occams inversion (Constable e al., 1987) of measured MT data. The logarithm of the

resistivity is taken.
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track of the level position. Fig. 5 shows the measurement
points of MT exploration. Actually, because the measure-
ment of MT depends on the frequency, it was converted to
depth in the inversion process. Fig. 6 shows the resistivity
structure of the study area obtained from Occam's inversion
(Constable et al., 1987) of measured MT data. For the con-
venience of calculation and stability, the logarithm of the
resistivity was taken. Compared with Fig. 4, the structure
roughly coincides with the RMR values at near surface,
ignoring the spatial resolution.

Methodology

In the process of local estimation using geostatistical
tools, direct measurements of the primary attribute of inter-
est are often supplemented by secondary information origi-
nating from other related categorical or continuous attributes
(Goovaerts, 1997). The estimation generally improves when
this additional and usually denser information is taken into
consideration, particularly when the primary data are sparse
or poorly correlated in space. In the problem of estimation
of RMR values, the primary information, RMR, tends to be
constrained to the borehole region, and it is natural to incor-
porate secondary information to support overall distribution.
Generally, RMR is evaluated by skilled experts, and the
evaluation factors include the solidity, joint, etc. Qualita-
tively, these characteristics of RMR are positively related to
the resistivity of geophysical exploration. This section
describes the geostatistical integration process by the simple
Kriging technique with a varying local mean value approach
and shows how to obtain the varying local mean value with
two different methods.

Simple Kriging with varying local mean values (SKlm)
In many geostatistics texts (Issaks and Srivastava, 1989),
the simple kriging (SK) estimator is:
n(u)
Zgw)—m=Y, Ao ()| Z(uty) ~m) . (1)

=1
Z;K(u) is the SK estimation of the RMR at point u, m is
the SK mean value, and AiK is the SK weights determined
from observed data Z(u,). Under the decision of stationar-
ity (Matheron, 1963), the mean m does not depend on loca-
tion u but represents global information common to all
unsampled locations. To account for the secondary informa-
tion, resistivity, available at each location u, the known sta-
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Fig. 7. A scattergram for all of the observed RMR values at bore-
holes versus corresponding MT resistivity values by simple regres-
sion.

tionary mean m may be replaced by known varying means
m;K(u), leading to the simple Kriging method with varying
local means (SKIm) estimator:
n(u)
Zseim(W) =)= Y, Ao W2t ) ~mgye(1ag)] )
a=1
The Kriging weights AiK () in Eq. (2) are obtained by
solving a simple Kriging system:

n(u)

Y, A W Cxuy~ug)=Cpluy-u) 0o=1, ., 0@  (3)

=1
where Cg(h) is the covariance function of the residual ran-
dom function R(u)=Z(u)-m(u), not that of Z(u) itself.

Here, two alternative methods may be used to estimate the
m;K(u) values. The first is to simply estimate the regression
line that reflects the correlation between resistivity and RMR.
The second one is to determine the function f{.) nonlinearly.

Simple regression for trend estimation

Fig. 7 shows a scattergram for all of the observed RMR
values at boreholes versus estimated ones from MT resistiv-
ity by simple regression. Fig. 7 implies prospect and disap-
pointment to adopt the resistivity as secondary information
for RMR estimation. First, it shows kinds of correlation
between two types of information, but also reveals signifi-
cant deviation from it. As seen in Table 1, the correlation
coefficient for simple regression is only 0.685. Fig. 8 shows
the Q-Q (quantile-quantile) plot to compare the aspect of
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Table 1. Regression parameters for RMR values at borehole ver-
sus resistivity data.

Parameter Values
Equation Y =29.77* X - 16.85
Number of data points used 469
Average X 324
Average Y 79.89
Residual sum of squares 71962.4
Regression sum of squares 63819.7
Coef of determination 0.685
100.0_Q-Q plot for regression
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Fig. 8. Q-Q plot for all of the observed RMR values at boreholes
versus corresponding MT resistivity values by simple regression.

each distribution. Especially at low RMR values, the Q-Q
plot is skewed to the regression value, meaning that the
RMR is overestimated at this range. To overcome this phe-
nomenon, simple Kriging with the varying local means
(Goovaerts, 1997) technique was adopted. For a more flexi-
ble identification of RMR values, a nonlinear transform
technique using the indicator approach was applied.

Nonlinear indicator transform of resistivity

Although it may be expected that any trend cannot fully
describe the relation between RMR and resistivity, a more
flexible method than the simple regression would be helpful
to obtain more plausible results. The nonlinear indicator
transform approach consists of discretizing the range of vari-
ation of the resistivity into K classes (yx, Yii]. The primary
local mean m(u) is then identified with the mean of RMR
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Fig. 9. Resistivity frequency for each range and its RMR value
by nonlinear indicator transform around the borehole sites. Resis-
tivity frequency is indicated on the left axis and RMR on the right
axis.

values with collocated resistivity values falling into class (v,

Ves1):
m*SK(u)zmlk with  y(u) e (¥, ¥4, 1]

where y(u) means the MT resistivity value at point u. The
conditional mean my, is computed as

1« .
== 2 (ugik) - z(ug) .
ka=1

The number of primary data z(u,), such as y(u,) € (v, ;41>
is my, and the y-indicator variable i(u;k) is defined as

Table 2. The conditional mean my, and the number of primary data
Z(1g), such as y(ug)e= (i, Vierl, for a given resistivity range of the
nonlinear indicator transform.

Resistivity range (Log) my "y
23~24 4593 12
24~2.5 56.40 18
2.5~2.6 57.07 9
26~277 63.39 14
2.7~2.8 69.71 18
2.3~29 62.87 23

2.9-3 68.70 25

3~3.1 76.16 24
3.1~32 78.53 26
3.2~33 82.57 61
33~34 84.51 57
34~3.5 8543 48
3.5~3.6 85.55 35
3.6~3.7 92.64 55
3.7~3.8 92.63 19
3.8~3.9 97.26 11

39~4 95.60 14
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Fig. 10. A scattergram for all of the observed RMR values at
boreholes versus corresponding MT resistivity values by nonlinear
indicator transform.

if )’(ua) € (yk’ Yis 1]

otherwise

1
i(ua;k):{
0

Fig. 9 displays the resistivity frequency for each range
around the borehole sites and its corresponding RMR value
from the nonlinear indicator transform. In this study, the
interval of resistivity was set as linearly 0.1 with 17 separa-
tions from 2.3 to 4.0. Table 2 shows the conditional mean
my and the number of primary data z(u,), m, for each

100.0_Q-Q plot for nonlinear transform
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Fig. 11. Q-Q plot for all of the observed RMR values at boreholes
versus corresponding MT resistivity values by nonlinear indicator
transform.
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Fig. 12. Identification of RMR values at borehole position x =
4610 (Fig. 3) using resistivity from MT data by simple regression
and nonlinear transform method. Resistivity values are indicated
on the right axis.

range for the nonlinear transform information.

Fig. 10 shows a scattergram for all of the observed RMR
values at boreholes versus estimated ones from MT resistiv-
ity by nonlinear indicator transform. The overall pattern is
not significantly different from that of regression. However,
the correlation coefficient is better and as shown in Fig. 11,
the g-q plot is more clearly identified than that of regression
around the low RMR values. This effect can easily be
shown for each borehole site.

Fig. 12 shows the identification of RMR values at bore-
hole position x=4610 (Fig. 3) using resistivity from MT data
by simple regression and the nonlinear transform method.
The nonlinearly transformed RMR values seem to be more
similar to the observed RMR values. For the high value
region, both of the methods are underestimating at the same
degree. However, for low value regions, the nonlinear
transform shows a more flexible match to RMR values.
Compared with results of the simple regression, a little
improvement is seen in the correlation coefficient. However,
the importance is simply not in the value of coefficient, but
in the flexibility and robustness of the nonlinear transform
method. A user may control the range of variation of
parameters depending on the interest or robustness of data.
However, both of the identification methods show a differ-
ence in the observed values; therefore, it requires more pro-
cesses to infer the RMR distribution at unsampled positions.
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265 (3) 15 a way to overcome this difference by geostatistical

250 4 “r spatial modeling of the residuals. Fig. 13 is a variogram

\ 34200 modeling result for residual of RMR values. A residual is

200 - calculated by subtracting the converted RMR trend of resis-

% tivity from observed RMR values at borehole sites. The var-
§ 150 +384 iogram model matches well with the traditional spherical
§ 100 a0, 4, THURT +279534432 model (Deutsch and Journel, 1998). Some extreme variances
+436 at distances farther than 100 m seem to be related with a

50 lack of horizontal continuity of borehole data. Seen in the

variogram model equation, because the range is small as 50

+

: m, the limit of residual information should be considerate.

residu
46.305 Nug(D) + 89.5705 Sph(35.7141)
T Y T T

0 T ———

0 20 40 60 80 100 1 . . . . .
distance o™ Then the Kriging technique is applied to the residual, and
Fig. 13. Variogram model for residuals. estimated residual values are added to the previous trend

value. Fig. 14 shows the overall schematic for the geostatis-
Results tical integration of MT resistivity and borehole data for spa-
tial RMR evaluation.
Geostatistical modeling of residual

Seen from previous sections, it is impossible to perfectly RMR distribution by SKIm method
identify the RMR value with resistivity data only by a trend Fig. 15 shows RMR distributions obtained by SKlm method
model of the simple regression or nonlinear transform. Eq. with two different trend modeling methods. The overall pat-
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Fig. 14. The schematics of joint interpretation of resistivity data and borehole RMR information. Nonlinear transform or simple regression
is applied to get trend component of RMR at unsampled position, then the simple Kriging estimation for the residual values are added to
the trend obtained by geostatistical modeling.
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Fig. 15. RMR distribution estimated by simple Kriging with local varying means methods. (a) determines the mean by nonlinear indicator
transform and (b) uses a simple regression.

tern of the RMR values is not significanily different between ferent. The RMR distribution from the trend of the nonlinear
the two results. However, as expected in Q-Q plot analysis, transform method showed more enhanced low value zones
the aspect of RMR values near low values is somewhat dif- around x =4200, x =4500 to 4700, x=5000 to 5200, and x
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Fig. 16. Difference between combined result using (a) MT resistivity and borehole information, and (b) using RMR data only with the
Kriging results.
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=5700, while the medium range of RMR, 60 to 70, is nar-
rower especially around x=4600 to 4700 than that of the
trend of the regression model. This phenomenon seems to
mean the nonlinear transform provides more dynamic ranges
to describe the RMR values.

Fig. 16 explains how the integrated estimation by the
algorithm of this study and Kriging results, using only RMR
values obtained at boreholes are different to each other. The
former reflects the subsurface structure well and improves
the spatial resolution of RMR values.

Conclusion and Discussion

Geostatistics is a very useful tool to estimate spatially dis-
tributed data at unsampled regions or points. For the spatial
estimation of RMR values generally obtained at limited region,
the simple Kriging technique with the local varying means
technique was applied. This approach takes the resistivity
data as exhaustive secondary information, and then integrates
it with the spatially limited borehole data. This method is
very simple and powerful to reflect the subsurface character-
istic into the RMR evaluation, which also depend on the
geological structure of the targeted area. Two types of
approach were used to obtain a trend model for RMR val-
ues at unsampled points from resistivity data. The nonlinear
indicator transform method was found to be more robust
and flexible than the regression technique.

However, because the geostatistical spatial modeling depends
only on the spatial continuity of obtained data, if the range
of limit of spatial continuity is narrower than the space of
the borehole sites, it would not reflect the information of the
borehole. Therefore, geostatistical estimation should have its
confidence limit, and the interpreter always should not
ignore it.
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