• Title/Summary/Keyword: 비선형관계

Search Result 819, Processing Time 0.029 seconds

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

Reducing the Scan Time in Gastric Emptying Scintigraphy by Using Mathematical Models (위배출 신티그래피에서 수학적 모델을 이용한 지연영상 시간의 단축)

  • Yoon, Min-Ki;Hwang, Kyung-Hoon;Choe, Won-Sick;Lee, Byeong-Il;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.257-262
    • /
    • 2005
  • Purpose: Gastric emptying scan (GES) is usually acquired up to 2 hours. Our study investigated whether a fraction of meal-retention in the stomach at 120 minutes (FR120) was predicted from the data measured for 90 minutes by using non-linear curve fitting. We aimed at saving the delayed imaging by utilizing mathematical models. Materials and Methods: Ninety-six patients underwent GES immediately after taking a boiled egg with 74 MBq (2 mCi) Tc-99m DTPA. The patients were divided into Group I ($T_{1/2}\;{\leq}90\;min$) and Group II ($90\;min). Group I (n=51) had 21 men and 30 women, and Group II (n=45) 15 men and 30 women. There was no significant difference in age and sex between the two groups. Simple exponential, power exponential, and modified power exponential curves were acquired from the measured fraction of meal-retention at each time (0, 15, 30, 45, 60, 75, and 90 min) by non-linear curve fitting ($MATLAB^{\circledR}$ 5.3) and another simple exponential fitting was performed on the fractions at late times (60, 75, and 90 min). A predicted FR120 was calculated from the acquired functional formulas. A correlation coefficient between the measured FR120 and the predicted FR120 was computed ($MedCalc^{\circledR}$ 6.0). Results: Correlation coefficients(r) between the measured FR120 and the predicted FR120 of each mathematical functions were as follows: simple exponential function (Group I: 0.8558, Group II: 0.5982, p<0.0001), power exponential function (Group I: 0.8755, Group II: 0.6008, p<0.0001), modified power exponential function (Group I: 0.8892, Group II: 0.5882, p<0.0001), and simple exponential function at the late times(Group I: 0.9085, Group II: 0.6832, p<0.0001). In all the fitting models, the predicted FR120 were significantly correlated with the measured FR120 in Group I but not in Group II. There was no statistically significant difference in correlation among the 4 mathematical models. Conclusion: In the cases with $T_{1/2}\;{\leq}90\;min$, the predicted FR120 is significantly correlated with the measured FR120. Therefore, FR120 can be predicted from the data measured for 90 minutes by using non-linear curve fitting, saving the delayed imaging after 90 minutes when $T_{1/2}\;{\leq}90\;min$ is ascertained.

Temperature-dependent Development Model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae) (흑다리긴노린재[Paromius exiguus (Distant)] 온도발육 모형)

  • Park, Chang-Gyu;Park, Hong-Hyun;Uhm, Ki-Baik;Lee, Joon-Ho
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The developmental time of immature stages of Paromius exiguus (Distant) was investigated at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20-30% RH, and a photoperiod of 14:10h (L:D). Eggs did not develop at $15^{\circ}C$, and their developmental time decreased with increasing temperatures. Its developmental time was longest at $17.5^{\circ}C$ (28.2 days) and shortest at $35^{\circ}C$ (5.9 days). The first nymphs failed to reach the next nymphal stage at 17.5 and $35^{\circ}C$. Nymphal developmental time decreased with increasing temperatures between $20^{\circ}C$ and $32.5^{\circ}C$, and developmental rate was decreased at temperatures above $30^{\circ}C$ in all stages except for the fourth nymphal stage. The relationship between developmental rate and temperature fit a linear model and three nonlinear models (Briere 1, Lactin 2, and Logan 6). The lower threshold temperature of egg and total nymphal stage was $l3.8^{\circ}C$ and $15.3^{\circ}C$, respectively. The thermal constant required to reach complete egg and the total nymphal stage was 109.9 and 312.5DD, respectively. The Logan-6 model was best fitted ($r^2$=0.94-0.99), among three nonlinear models. The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2$=0.91-0.99).

Comparison of Development times of Myzus persicae (Hemiptera:Aphididae) between the Constant and Variable Temperatures and its Temperature-dependent Development Models (항온과 변온조건에서 복숭아혹진딧물의 발육비교 및 온도 발육모형)

  • Kim, Do-Ik;Choi, Duck-Soo;Ko, Suk-Ju;Kang, Beom-Ryong;Park, Chang-Gyu;Kim, Seon-Gon;Park, Jong-Dae;Kim, Sang-Soo
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.431-438
    • /
    • 2012
  • The developmental time of the nymphs of Myzus persicae was studied in the laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a green-pepper plastic house. Mortality of M. persicae in laboratory was high in the first(6.7~13.3%) and second instar nymphs(6.7%) at low temperatures and high in the third (17.8%) and fourth instar nymphs(17.8%) at high temperatures. Mortality was 66.7% at $33^{\circ}C$ in laboratory and $26.7^{\circ}C$ in plastic house. The total developmental time was the longest at $14.6^{\circ}C$ (14.4 days) and shortest at $26.7^{\circ}C$ (6.0 days) in plastic house. The lower threshold temperature of the total nymphal stage was $3.0^{\circ}C$ in laboratory. The thermal constant required for nymphal stage was 111.1DD. The relationship between developmental rate and temperature was fitted nonlinear model by Logan-6 which has the lowest value on Akaike information criterion (AIC) and Bayesian information criterion (BIC). The distribution of completion of each developmental stage was well described by the 3-parameter Weibull function ($r^2=0.95{\sim}0.97$). This model accurately described the predicted and observed occurrences. Thus the model is considered to be good for use in predicting the optimal spray time for Myzus persicae.

Comparison of Temperature-dependent Development Model of Aphis gossypii (Hemiptera: Aphididae) under Constant Temperature and Fluctuating Temperature (실내 항온과 온실 변온조건에서 목화진딧물의 온도 발육비교)

  • Kim, Do-Ik;Ko, Suk-Ju;Choi, Duck-Soo;Kang, Beom-Ryong;Park, Chang-Gyu;Kim, Seon-Gon;Park, Jong-Dae;Kim, Sang-Soo
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.421-429
    • /
    • 2012
  • The developmental time period of Aphis gossypii was studied in laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a cucumber plastic house. The mortality of A. gossypii in the laboratory was high in the 2nd (20.0%) and 3rd stage(13.3%) at low temperature but high in the 3rd (26.7%) and 4th stage (33.3%) at high temperatures. Mortality in the plastic house was high in the 1st and 2nd stage but there was no mortality in the 4th stage at low temperature. The total developmental period was longest at $15^{\circ}C$ (12.2 days) in the laboratory and shortest at $28.5^{\circ}C$ (4.09 days) in the plastic house. The lower threshold temperature at the total nymphal stage was $6.8^{\circ}C$ in laboratory. The thermal constant required to reach the total nymphal stage was 111.1DD. The relationship between the developmental rate and temperature fit the nonlinear model of Logan-6 which has the lowest value for the Akaike information criterion(AIC) and Bayesian information criterion(BIC). The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2=0.89{\sim}0.96$). This model accurately described the predicted and observed outcomes. Thus it is considered that the model can be used for predicting the optimal spray time for Aphis gossypii.

Methods of Weighting Matrices Determination of Moving Double Poles with Jordan Block to Real Poles By LQ Control (LQ 제어로 조단블록이 있는 중근을 실근으로 이동시키는 가중행렬 결정 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.634-639
    • /
    • 2020
  • In general, the stability and response characteristics of the system can be improved by changing the pole position because a nonlinear system can be linearized by the product of a 1st and 2nd order system. Therefore, a controller that moves the pole can be designed in various ways. Among the other methods, LQ control ensures the stability of the system. On the other hand, it is difficult to specify the location of the pole arbitrarily because the desired response characteristic is obtained by selecting the weighting matrix by trial and error. This paper evaluated a method of selecting a weighting matrix of LQ control that moves multiple double poles with Jordan blocks to real poles. The relational equation between the double poles and weighting matrices were derived from the characteristic equation of the Hamiltonian system with a diagonal control weighting matrix and a state weighting matrix represented by two variables (ρd, ϕd). The Moving-Range was obtained under the condition that the state-weighting matrix becomes a positive semi-definite matrix. This paper proposes a method of selecting poles in this range and calculating the weighting matrices by the relational equation. Numerical examples are presented to show the usefulness of the proposed method.

Relationship between Tangential Cohesion and Friction Angle Implied in the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴조건식에 내포된 접선점착력과 접선마찰각의 상관성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.366-372
    • /
    • 2014
  • The generalized Hoek-Brown (H-B) function provides a unique failure condition for a jointed rock mass, in which the strength parameters of rock mass are deduced from the intact values by use of the GSI value. Since it is actually the only failure criterion which accounts for the rock mass conditions in a systematic manner, the generalized H-B criterion finds many applications to the various rock engineering projects. Its nonlinear character, however, limits more active usage of this criterion. Accordingly, many attempts have been made to understand the generalized H-B condition in the framework of the M-C function. This study presents the closed-form expression relating the tangential cohesion to the tangential friction angle, which is derived by the non-dimensional stress transformation of the generalized H-B criterion. By use of the derived equation, it is investigated how the relationship between the tangential cohesion and friction angle of the generalized H-B criterion varies with the quality of rock masses. When only the variation of GSI value is considered, it is found that the tangential friction angle decreases with the increase of GSI, while the tangential cohesion increases with GSI value.

Development of Sag and Tension Sensitivity Estimation Method for Configuration Control under PPWS Erection in a Suspension Bridge (현수교 PPWS 가설중 형상관리를 위한 PPWS 새그 및 장력민감도 산정법 개발)

  • Jeong, Woon;Seo, Ju Won;Lee, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.255-266
    • /
    • 2012
  • Main cable of a suspension bridge is the important member which shows the overall structure integrity at bridge completion. Configuration of main cable is a free hanging state at cable erection completion and is different from that at bridge completion supporting the dead loads such as hanger, girder, and so on. Accordingly, the configuration control under cable erection is considerably significant because the configuration at cable erection completion has direct influence on that at bridge completion. That is performed by sag adjustments at center, side span and tension adjustments at anchor span. The former needs the sag sensitivity which represents the control quantity of strand length corresponding to that of sag. The latter requires the tension sensitivity which shows the change of strand tension according to that of strand temperature. In this study, the fundamental equations of cable were derived with the assumption of either catenary or parabola shape, the differential-related equations using chain rule on horizontal tension were drawn from those and finally the estimation methods of the sag / tension sensitivity were proposed from both those. The nonlinear numerical analysis flow charts of sag sensitivity based on the catenary equations were proposed and the sag sensitivities grounded on the differential-related equations were compared with the results using them for various parameters of sag change. Also, considering the combinations of sag change parameters, the calculation method of the final variation for the cable sag was suggested. For the real suspension bridge under construction with PPWS method, the sag/tension sensitivity were estimated considering the construction conditions like the change of PPWS length, PPWS temperature, bridge span, etc.. We hope that this study will be a systematic guideline for the configuration control under main cable erection and improved highly by field verification in the real bridge site.

Parameter Analysis for Influence on the Scour Width around Submarine Pipelines in Waves (파랑하 해저관로 주변의 세굴폭에 영향을 주는 매개변수 분석)

  • Oh, Hyoun-Sik;Kim, Kyoung-Ho;Son, Kwang-Sik;Kim, Heung-Guk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.470-479
    • /
    • 2009
  • The local scour in waves can be thought of as very complex synthetic processes which is influenced by geology of bed material, bed flow in the sea and hydraulics condition. The most research until now be targeted at the scour depth and therefore the local scour width in waves has not been investigated as well. The size of wave or bottom velocity at the bed is direct cause of the local scour among lots of the scour effect factors, and the scour depth and width can be estimated through interrelationship analysis with scour area to use the dimensionless parameters including these such as Keulegan-Carpenter number, Ursell number etc. In this paper, to find out closely relation with the dimensionless parameters and scour width, performed an experiment with the variations of pipe diameters, wave heights and wave periods and then analyzed it. As the result, while Reynolds number and period parameter were seen to disperse local scour width largely, Shields number, KC number and Ursell number appeared good interrelationship. Specially, Shields number doesn't much affect the scour depth but has good relation for the scour width.

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.