DOI QR코드

DOI QR Code

Temperature-dependent Development Model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae)

흑다리긴노린재[Paromius exiguus (Distant)] 온도발육 모형

  • Park, Chang-Gyu (Crop protection Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Park, Hong-Hyun (Crop protection Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Uhm, Ki-Baik (Crop protection Division, Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Lee, Joon-Ho (Entomology Program, Department of Agricultural Biotechnology, Seoul National University)
  • 박창규 (국립농업과학원 농업생물부 작물보호과) ;
  • 박홍현 (국립농업과학원 농업생물부 작물보호과) ;
  • 엄기백 (국립농업과학원 농업생물부 작물보호과) ;
  • 이준호 (서울대학교 농생명공학부 곤충학)
  • Received : 2010.10.06
  • Accepted : 2010.11.22
  • Published : 2010.12.30

Abstract

The developmental time of immature stages of Paromius exiguus (Distant) was investigated at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20-30% RH, and a photoperiod of 14:10h (L:D). Eggs did not develop at $15^{\circ}C$, and their developmental time decreased with increasing temperatures. Its developmental time was longest at $17.5^{\circ}C$ (28.2 days) and shortest at $35^{\circ}C$ (5.9 days). The first nymphs failed to reach the next nymphal stage at 17.5 and $35^{\circ}C$. Nymphal developmental time decreased with increasing temperatures between $20^{\circ}C$ and $32.5^{\circ}C$, and developmental rate was decreased at temperatures above $30^{\circ}C$ in all stages except for the fourth nymphal stage. The relationship between developmental rate and temperature fit a linear model and three nonlinear models (Briere 1, Lactin 2, and Logan 6). The lower threshold temperature of egg and total nymphal stage was $l3.8^{\circ}C$ and $15.3^{\circ}C$, respectively. The thermal constant required to reach complete egg and the total nymphal stage was 109.9 and 312.5DD, respectively. The Logan-6 model was best fitted ($r^2$=0.94-0.99), among three nonlinear models. The distribution of completion of each development stage was well described by the 3-parameter Weibull function ($r^2$=0.91-0.99).

흑다리긴노린재 [Paromius exiguus (Distant)]의 온도에 따른 발육 시험을 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$의 9개 항온, 광주기 14L:10D, 상대습도 20-30% 조건에서 수행하였다. 알은 $15^{\circ}C$에서 발육하지 못하였으며 $17.5^{\circ}C$에서 발육기간이 28.2일로 가장 길었고 온도가 증가함에 따라 짧아져 $35^{\circ}C$에서 5.9일이 소요되었다. 약층은 $17.5^{\circ}C$$35^{\circ}C$에서 1령 약층을 넘기지 못하고 모두 사망하였으나, $20-32.5^{\circ}C$ 범위에서는 온도가 증가할수록 발육기간이 짧아지는 경향을 보였고, 4령을 제외한 모든 영기에서 $32.5^{\circ}C$에서의 발육기간이 $30^{\circ}C$와 같거나 더 길어져 발육속도가 둔화되는 경향을 보였다. 온도와 발육율과의 관계를 설명하기 위해 선형 및 3개의 비선형(Briere 1, Lactin 2, Logan 6) 모형을 사용하여 분석하였다. 선형모형을 이용하여 추정한 알과 전체 약층발육의 발육영점온도는 $13.8^{\circ}C$$15.3^{\circ}C$였으며 발육 유효적산온도는 각각 109.9, 312.5DD였다. 3가지 비선형 모형 종 Logan-6 모형이 모든 발육단계에서 온도와 발육율과의 관계를 가장 잘 설명하였다 ($r^2$=0.94-0.99). 알 및 유충의 발육단계별 발육완료 분포는 3-parameter Weibull 함수를 사용하였으며 모든 발육단계에서 높은 $r^2$ (0.91-0.99) 값을 보여 양호한 모형 적합성을 보였다.

Keywords

References

  1. Briere, J.F. and P. Pracros. 1998. Comparison of temperature- dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27: 94-101. https://doi.org/10.1093/ee/27.1.94
  2. Briere, J.F., P. Pracros, A.Y. Le Roux and J.S. Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28: 22-29. https://doi.org/10.1093/ee/28.1.22
  3. Campbell, A., B.D. Frazer, N. Gilbert, A.P. Gutierrez and M. Markauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431-438. https://doi.org/10.2307/2402197
  4. Curry, G.L., R.M. Feldman and K.C. Smith. 1978a. A stochasitc model of a temperature-dependent population. J. Theor. Pop. Biol. 13: 197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  5. Curry, G.L., R.M. Feldman and P.J.H. Sharpe. 1978b. Foundation of stochastic development. J. Theor. Biol. 74: 397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  6. Han, M.W., J.H. Lee and M.H. Lee. 1993. Effect of temperature on development of oriental tobacco budworm, Helicoverpa assulta Guenee. Kor. J. Appl. Entomol. 32: 236-244.
  7. Lactin, D.J., N.J. Holliday, D.I. Johnson and R. Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24: 68-75. https://doi.org/10.1093/ee/24.1.68
  8. Liu, S.S., F.Z. Chen and M.P. Zalucki. 2002. Development and survival of the diamondabck moth (Lipidoptera: Plutellidae) at constant and alternating temperatures. Environ. Entomol. 31: 221-231. https://doi.org/10.1603/0046-225X-31.2.221
  9. Logan, J.A., D.J. Wollkind, S.C. Hoyt and L.K. Tanigoshi. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5: 1133-1140. https://doi.org/10.1093/ee/5.6.1133
  10. Kim, D.S., J.H. Lee and M.S. Yiem. 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environ. Entomol. 30: 298-305. https://doi.org/10.1603/0046-225X-30.2.298
  11. Kim, D.S. and J.H. Lee. 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecol. Model. 162: 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
  12. Park, C.G., H.H. Park, K.B. Uhm and J.H. Lee. 2009. Seasonal occurrence and age structure of Paromius exiguus (Distant) (Heteroptera: Lygaeidae) on major host plants. Kor. J. Appl. Entomol. 48: 21-27. https://doi.org/10.5656/KSAE.2009.48.1.021
  13. Park, C.G., H.Y. Kim and J.H. Lee. 2010. Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 13: 145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  14. SAS Institute. 1999. SAS OnlineDoc. version 8.01. SAS Institute. Cary NC.
  15. Schoolfield, R.M., P.J.H. Sharpe and C.E. Mugnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  16. Scott, J.K. and P.B. Yeoh. 1999. Bionomics and the predicted distribution of the aphid Brachycaudus rumexicolens (Hemiptera: Aphididae). Bull. Entomol. Res. 89: 97-106.
  17. Sharpe, P.J.H. and D.W. DeMichele. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  18. Sharpe, P.J.H., G.L. Curry, D.W. DeMichele and C.L. Cole. 1977. Distribution model of organisms development times. J. Theor. Biol. 66: 21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  19. Skinner, L.C., D.W. Ragsdale, R.W. Hansen, M.A. Chandler, and R.D. Moon. 2004. Temperature-dependent development of overwintering Aphthona lacertosa and A. nigriscutis (Coleoptera: Chrysomelidae): Two flea beetles introduced for the biological control of leafy spurge, Euphorbia esula. Environ. Entomol. 33: 147-154. https://doi.org/10.1603/0046-225X-33.2.147
  20. SYSTAT software inc. 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. inc. San Jose, CA.
  21. Takimoto, M., T. Asayama, Y. Isogawa, T. Nakagome, S. Katou and Y. Uebayasi. 1989. Ecology and chemical control of Paromius exiguus Distant (Heteroptera: Lygaeidae). Res. Bull. Aichi Agric. Res. Ctr. 21: 69-77.
  22. Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117: 1-23. https://doi.org/10.1086/283683
  23. Wagner, T.L., H. Wu, P.J.H. Sharpe, R.M. Schoolfield and R.N. Coulson. 1984a, Modeling insect development rates: a literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77: 208-225. https://doi.org/10.1093/aesa/77.2.208
  24. Wagner, T.L., H. Wu, P.J.H. Sharpe and R.N. Coulson. 1984b. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77: 475-487. https://doi.org/10.1093/aesa/77.5.475

Cited by

  1. Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) vol.52, pp.4, 2013, https://doi.org/10.5656/KSAE.2013.11.0.066
  2. Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change vol.16, pp.4, 2014, https://doi.org/10.5532/KJAFM.2014.16.4.368
  3. Comparison of Temperature-dependent Development Model of Aphis gossypii (Hemiptera: Aphididae) under Constant Temperature and Fluctuating Temperature vol.51, pp.4, 2012, https://doi.org/10.5656/KSAE.2012.10.0.031
  4. Comparison of Development times of Myzus persicae (Hemiptera:Aphididae) between the Constant and Variable Temperatures and its Temperature-dependent Development Models vol.51, pp.4, 2012, https://doi.org/10.5656/KSAE.2012.10.0.032