DOI QR코드

DOI QR Code

A Comparison of Samplers for Aquatic Macroinvertebrate in Rice Paddies: Aquatic Net, Quadrat and Core

논에 서식하는 수서 대형무척추동물의 채집기 비교: 채집망과 방형구 및 core

  • Kang, Hyun-Kyung (Applied Biology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Chung, Keun (Applied Biology, College of Agriculture and Life Sciences, Kangwon National University)
  • 강현경 (강원대학교 농업생명과학대학 응용생물학) ;
  • 정근 (강원대학교 농업생명과학대학 응용생물학)
  • Received : 2010.08.13
  • Accepted : 2010.11.25
  • Published : 2010.12.30

Abstract

With growing interest in biodiversity in rice paddies, efficient sampling methods for quantitative evaluation of aquatic macroinvertebrates are needed because of their important role in rice paddies' food webs. For this reason, we sought a proper sampling method through comparing data collected by using aquatic net, quadrat, and core in rice paddies located in Chuncheon-si, Kangwon-do, Hongseong-gun, and Chungcheongnam-do. Because the frame of the net was rectangular and had a flat bottom, the area, sampledwith the aquatic net, was calculated by multiplying the net width by the sweeping length, All samples were taken from the space between the rows of rice plants. Twenty four taxa of macro invertebrates were collected in Chuncheon and 28 taxa in Hongseong. In Chuncheon, the number of taxa was similar among three sampling methods (17-18 taxa), but the number of individuals was different (aquatic net, $1,317/m^2$; quadrat, $1,368/m^2$; core, $1,810/m^2$. In Hongseong, the number of taxa sampled by aquatic net was the highest (aquatic net, 25 taxa; quadrat, 21 taxa; core, 16 taxa), but the core was the highest in the number of individuals (aquatic net, $1,586/m^2$; quadrat, $2,595/m^2$; core, $3,704/m^2$. The efficiency of samplers differed among taxa. Most of aquatic insect taxa were more abundant in the aquatic net, while those living on or in the paddy substratum such as Oligochaeta and Chironomidae were collected more in the quadrat sampler. To collect quantitative data for aquatic insects as well as to produce inventory of rare taxa, we suggest, based on samplers used in this study, to take quantitative samples of 6 replications from each of the edge and inner zones of a rice paddy by using an aquatic net, and to take qualitative samples both from sides of levees and the inner zone of rice paddy by using an aquatic net.

논의 생물다양성에 관한 관심이 증가하면서 논 먹이망의 중요한 부분을 차지하고 있는 수서성 대형무척추동물을 정량적으로 평가하기 위한 효율적인 방법이 요구된다. 이를 위해, 강원도 춘천시와 충청남도 홍성군에 위치한 논에서 채집망과 방형구, 피이프형 채집기(core)로 얻어진 자료를 비교하여 적절한 채집기를 알아보았다. 채집망은 틀이 사각형이고, 바닥이 평평하기 때문에, 채집망의 조사 면적은 토양을 훑은 길이와 망의 넓이를 곱하여 측정되었다. 모든 채집물은 두 벼줄 사이에서 채집되었다. 대형무척추동물은 춘천과 홍성에서 24, 28분류군이 채집되었다. 춘천에서 분류군수는 세 가지 채집기에서 유사했지만(17-18분류군), 추정밀도는 그렇지 않았다(채집망, $1317/m^2$; 방형구, $1368/m^2$ core, $1810/m^2$). 홍성에서는 채집망에서 분류군 수가 가장 컸었지만(채집망 25분류군; 방형구, 21분류군 core, 16분류군), 추정밀도는 core에서 가장 높았다(채집망, $1586/m^2$; 방형구; $2595/m^2$; core $3704/m^2$). 각 채집기의 효율은 분류군에 따라 달랐는데, 채집망에는 주로 수서곤충류가 많았던 것에 비해 방형구에는 빈모류나 깔따구과 등 토양 속에 서식하는 종류에 대한 효율이 높았다. 논에 서식하는 수서곤충에 대한 정량자료와 희귀분류군에 대한 정성자료를 통시에 얻고자 하는 경우에는 채집망을 이용하여 논 가장자리와 논 내부에서 각 6회 정량채집하고, 논둑 근처와 논 가운데에서 정성채집을 수행되는 것이 시간 및 노동력 측면에서 가장 경제적 이라고 생각된다.

Keywords

References

  1. Bambaradeniya, C.N.B., J.P. Edirisinghe, D.N. De Silva, C.V.S. Gunatilleke, K.B. Ranawana, and S. Wijekoon. 2004. Biodiversity associated with an irrigated rice agroecosystem in Sri Lanka. Biodiversity and Conserv. 13: 1715-1753. https://doi.org/10.1023/B:BIOC.0000029331.92656.de
  2. Chadzon, R.L., R.K. Colwell, J.S. Denslow and M.R. Guariguata. 1998. Chapter 16. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of northeastern Costa Rica. pp. 285-309. In Forest biodiversity research, monitoring and modeling. eds. by F. Dallmeier and J. A. Comiskey). The Parthenon Publishing Group. Nashville, TN. USA.
  3. Chao, A. 1987. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783-791. https://doi.org/10.2307/2531532
  4. Chao, A., R.K. Colwell, C.W. Lin and N.J. Getelli. 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90: 1125-1133. https://doi.org/10.1890/07-2147.1
  5. Czech, H.A. and K.C. Parsons. 2002. Agricultural wetlands and waterbirds: a review. Waterbirds 25 (Special Publication 2): 56-65. https://doi.org/10.1675/1524-4695(2002)025[0056:BEOWTI]2.0.CO;2
  6. Cohen, J.E., K. Schoenly, K.L. Heong, H. Justo, G. Arida, A.T. Barrion and J.A. Litsinger. 1994. A food web approach to evaluating the effect of insecticide spraying on insect pest population dynamics in a Philippine irrigated rice ecosystem. J. Appl. Ecol. 31: 747-763. https://doi.org/10.2307/2404165
  7. Coleman, B.D., M.A. Mares, M.R. Willig and Y.-H. Hsieh. 1982. Randomness, area, and species richness. Ecology 63: 1121-1133. https://doi.org/10.2307/1937249
  8. Colwell, R.K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User's Guide and application published at: http://purl.oclc.org/estimates.
  9. Colwell, R.K. and J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B. 345: 101-118. https://doi.org/10.1098/rstb.1994.0091
  10. Colwell, R.K., C.X. Mao and J. Chang. 2004. Interpolating, extrapolating, and comparing indidence-based species accumulation curves. Ecology 85: 2717-2727. https://doi.org/10.1890/03-0557
  11. Dolmen, D. and J.O. Solem. 2002. Life history of Ilybius fenestratus (Fabricius) (Coleoptera, Dytiscidae) in a Central Norwegian Lake. Aquat. insects 24: 199-205. https://doi.org/10.1076/aqin.24.3.199.8118
  12. Fasola, M., L. Canova and N. Saino. 1996. Rice fields support a large portion of herons breeding in the Mediterranean region. Colonial Waterbirds 19: 129-134. https://doi.org/10.2307/1521956
  13. Gotelli, N.J. and R.K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
  14. Han, M.S., J.D. Shin, Y.E. Na, N.J. Lee, M.H. Park and S.G. Kim. 2002. Changes of invertebrate density in rice paddies of different fertilizer managements in demonstration villages of sustainable agriculture. Kor. J. of Environmental Agriculture 21: 96-101. https://doi.org/10.5338/KJEA.2002.21.2.096
  15. Ikemoto, T. 1976. A method, using a static quatrat device and a small suction pump, for sampling of the immature stages of mosquitoes in rice field. Jap. J. Sanit. Zool. 27: 153-156.
  16. Ishida, K. 1996. Monograph of Odonata larvae in Japan. Hokkaido university Press, Sapporo, Japan.
  17. Kandibane, M., S. Raguraman and N.R. Mahadevan. 2007. Diversity and community structure of aquatic arthropods in and irrigated rice ecosystem of Tamil Nadu, India. Asian J. Plant Sci. 6: 741-748. https://doi.org/10.3923/ajps.2007.741.748
  18. Krebs, C.J. 1998. Ecological Methodology (2ed). Harper and Row, New York. USA.
  19. Lawler, S.P. and D.A. Dritz. 2005. Straw and winter flooding benefit mosquitoes and other insects in a rice agroecosystem. Ecol. Appl. 15: 2052-2059. https://doi.org/10.1890/03-5420
  20. Maeda, T. 2001. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16: 569-585. https://doi.org/10.1046/j.1440-1703.2001.00418.x
  21. Merritt, R.W., V.H. Resh, and K.W. Cummins. 1996. Collecting, sampling and rearing procedures. pp. 12-28. In An introduction to the aquatic insect of North America eds. by R.W. Merritt and K.W. Cummins. Kendall-Hunt Publishing Company, Dubuque, Iowa, USA.
  22. Osawa, S., T. Inoue and T. Katsuno. 2004. Effects of Paddy Field Management during Winter on the Condition of the Aquatic Animals in Valley-bottom Paddy Fields in Spring. Journal of the Japanese Institute of Landscape Architecture 67: 335-338. https://doi.org/10.5632/jila.67.335
  23. Park, H.H. and J.H. Lee. 2006. Arthropod trophic relationships in a temperate rice ecosystem: a stable isotope analysis with $\delta^{13}C$ and $\delta^{15}N$. Environ. Entomol. 35(3): 684-693. https://doi.org/10.1603/0046-225X-35.3.684
  24. Poulin, R. 1998. Comparison of three estimators of species richness in parasite component communities. J. Parasitol. 84: 485-490.
  25. RDA (Rural Development Adminstration, Korea). 2008. Illustrated aquatic invertebrate fauna in rice paddy ecosystem (revised).
  26. Richardson, A.J., I.R. Taylor and J.E. Growns, 2001. The foraging ecology of Egrets in rice fields in southern New South Wales, Australia. Waterbirds 24: 255-264. https://doi.org/10.2307/1522039
  27. Robert, V., G. Le Goff, F. Ariey and J. B. Duchemin. 2002. A possible alternative method for collecting mosquito larvae in rice fields. Malar. J. 1: 4. https://doi.org/10.1186/1475-2875-1-4
  28. Schoenly, K.G., J.E. Cohen, K.L. Heong, J.A. Litsinger, G.B. Aquino, A.T. Barrion and G. Arida. 1996. Food web dynamics of irrigated rice fields at five elevations in Luzon, Philippines. Bull. Entomol. Res. 86: 451-466. https://doi.org/10.1017/S0007485300035033
  29. Schoenly, K.G., H.D. Justo, Jr., A.T. Barrion, M.K. Harris and D.G. Bottrell. 1998. Analysis of invertebrate biodiversity in a Philippine farmer's irrigated rice field. Environ. Entomol. 27: 1125-1136. https://doi.org/10.1093/ee/27.5.1125
  30. Schoenly, K.G. and I. Domingo. 1999. A modified area sampler for aquatic invertebrate assemblages in flooded rice. Int. Rice Res. Notes 24: 38-40.
  31. Schoenly, K.G. and I. Domingo and A.T. Barrion. 2003. Determining optimal quadrat size for invertebrate communities in agrobiodiversity studies: a case study from tropical irrigated rice. Environ. Entomol. 32: 929-938. https://doi.org/10.1603/0046-225X-32.5.929
  32. Silver, J.B. 2008. Mosquito ecology: field sampling methods. 3rd ed. Springer, Dordrecht, The Netherlands.
  33. Takahashi, R.M., T. Miura and W.H. Wilder. 1982. A comparison between the area sampler and the two other sampling devices for aquatic fauna in rice fields. Mosquito News 42: 211-216.
  34. Wallace, J.B. and N.H. Anderson. 1996. Habitat, life history, and behavioral adaptions of aquatic insects. pp. 41-73. In An introduction to the aquatic insect of North America eds. by R.W. Merritt and K.W. Cummins. Kendall-Hunt Publishing Company, Dubuque, Iowa, USA.
  35. Yokota, H. 2002. The effect of tillage on the population density of small Oligochaeta (Enchytraeidae and Naididae) in paddy field, Japan. Jpn. J. Soil Sci. Plant Nutr. 73: 33-39 (Japanese with english abstract)
  36. Yoon, I.B. 1995. Aquatic insects of Korea. Junghaengsa. Seoul. Korea.
  37. Zar, J.H. 1999. Biostatistical analysis. 4th ed. Prentice-Hall International. Simon & Schuster Asia Pte Ltd. Singapore.
  38. Zoran, M.J. and C.D. Drews. 1988. The rapid tail withdrawal reflex of the tubificid worm, Brunchiura sowerbyi. J. Exp. Biol. 137: 487-500.

Cited by

  1. Characteristics Communities Structure of Benthic Macroinvertebrates at Irrigation Ponds, within Paddy Field vol.32, pp.4, 2013, https://doi.org/10.5338/KJEA.2013.32.4.304
  2. The Development of a Sampling Instrument for Aquatic Organisms in Rice Paddy Fields: Submerged Funnel Traps with Attractants vol.35, pp.4, 2017, https://doi.org/10.11626/KJEB.2017.35.4.640
  3. Regional and Temporal Characteristics of Aquatic Organism Communities in Rice Paddy Fields, using Submerged Funnel Trap vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.099