Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses

시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교

  • Park, Jung-Joon (Institute of Life Science and Natural Resources, Korea University) ;
  • Park, Kuen-Woo (Division of Biotechnology, Korea University) ;
  • Shin, Key-Il (Department of Statistics, Hankuk University of Foreign Studies) ;
  • Cho, Ki-Jong (Division of Environmental Science and Ecological Engineering, Korea University)
  • 박정준 (고려대학교 생명자원연구소) ;
  • 박권우 (고려대학교 생명공학부) ;
  • 신기일 (한국외국어대학교 통계학과) ;
  • 조기종 (고려대학교 환경생태공학부)
  • Received : 2011.07.19
  • Accepted : 2011.09.01
  • Published : 2011.10.31

Abstract

Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

방울토마토(Lycopersicon esculentum cv. Koko) 재배 온실에 피해를 주는 온실가루이 개체군(Trialeurodes vaporariorum (Westwood))의 온도 발육 모형과 암컷 성충 산란 모형을 작성하여 시설 내 대기 중 온도와 미기상 온도인 잎 뒷면 온도를 적용한 DYMEX 프로그램(호주 CSIRO에서 개발한 미리 탑재된 모듈들을 사용하는 모의 실험 프로그램)으로 밀도 변동을 모의 실험하였다. 온도에 따라 상이한 발육 기간과 산란수를 각각 표준화시킨 발육 완료 분포 모형과 연령 특이적 산란수와 생존율을 비선형 회귀 모형에 적합시켜 밀도 변동 모의 실험을 하였다. 실제 줄내림 방식의 방울 토마토에서 토마토 식물체를 3위치(상단: 지상 1.6m 이상, 중단: 지상 0.9-1.2m 사이, 하단: 지상 0.3-0.5m 사이)로 나누어 각 위치별로 온실 내 대기 중 온도와 잎 뒷면 온도를 기록하였다. 온실 내 대기 중 온도와 잎 뒷면 온도간의 상관 관계를 비선형 회귀로 적합하여, 온실 내 미기상 온도 자료를 만들었다. 온실 내 미기상 온도 자료인 잎 뒷면 최대 온도는 대기 중 최대 온도보다 항상 낮게 유지되고 있었으며, 하단, 상단, 중단의 순으로 온도가 낮아지는 현상을 보였다. 모의 실험을 위한 시기와 초기 이입 밀도의 설정은 황색 점착 트랩을 이용하여 실제 온실에서 이입되는 시기(6월초)에 유인된 암컷 성충 10마리를 사용하였다. 온실 내 대기 중 온도 자료와 잎 뒷면 온도 자료를 각각 이용하여 온실가루이 유충의 발육 모형과 성충의 산란 모형을 DYMEX 프로그램으로 모의 실험하였다. 모의 실험 결과 검증을 위해 대기 중 온도와 잎뒷면 온도를 조사한 온실에서 토마토 식물체 3위치별, 각태별 온실가루이 밀도의 육안 조사도 실시하였다. 알의 경우 크기로 인해 육안 조사 대상에서 제외되었다. 육안 조사 결과와 육안 조사 시기의 DYMEX 모의 실험 결과값을 상관 분석하였다. 육안 조사 온실가루이 밀도와 잎 뒷면 온도를 이용한 모의 실험 결과 밀도가 모든 발육태에서 항상 양의 상관 관계를 보였다. 육안 조사 결과 밀도 변동 패턴도 방울토마토 잎 뒷면 온도를 이용한 모의 실험 결과 밀도 변동 패턴과 유사하였다. 본 연구 결과 방울토마토 온실에서 온실가루이 개체군 밀도 변동의 적절한 예측을 위해서는 잎 뒷면 온도를 고려해야 하는 것으로 나타났다.

Keywords

References

  1. Briere, J.-F., P. Pracros, A.-Y. Le Roux, and J.-S. Pierre. 1999. A novel rate model of temperature-dependent developmentfor arthropods. Environ. Entomol. 28:22-29. https://doi.org/10.1093/ee/28.1.22
  2. Brown, J.K. 1990. An update on the whitefly-transmitted geminiviruses in the Americas and Caribbean Basin. FAO Plant Prot. Bull. 39:5-23.
  3. Byrne, D.N., P.K. Von Brezttel, and C.J. Hoffman. 1986. Impact of trap design and placement when monitoring for the bandedwing whitefly and the sweetpotato whitefly (Homoptera: Aleyrodidae). Environ. Entomol. 15:300-304. https://doi.org/10.1093/ee/15.2.300
  4. Campbell, C.L. and L.V. Madden. 1990. Introduction to plant disease epidemiology. Wiley Interscience, N.Y.
  5. Choi, K.M., S.B. Ahn, W.S. Cho, S.H. Lee, S.C. Han, and M.H. Lee. 1991. The illustrated guide to Korean vegetable insect pests. NongJinHoe, Suwon, Korea.
  6. Classen, A.T., S.C Hart, T.G. Whitman, N.S. Cobb, and G.W. Koch. 2005. Insect infestations links to shifts in microclimate: Important climate change implications. Soil Sci. Soc. Amer. J. 69:2045-2057.
  7. Evert, C. van and H. Schutte. 1983. Enige aspecten van de biologie van Trialeurodes vaporariorum en Encarsia formosa. M. Sc. Thesis, University of Leiden, The Netherlands.
  8. Ferro, D.N., R.B. Chapman, and D.R. Penman. 1979. Observations on insect microclimate and insect pest management. Environ. Entomol. 8:1000-1003. https://doi.org/10.1093/ee/8.6.1000
  9. Fukumoto, Y., K. Hashizume, and Y. Nishimura. 2010. Development of supply system of microbubble ozonated water in agriculture. Hort. Environ. Biotechnol. 51:21-27.
  10. Jandel Scientific. 1996. TableCurve 2D. Automated curve fitting and equation discovery: version 4.0. Jandel Scientific, San Rafel, C.A.
  11. Kim, D.-S. and J.-H. Lee. 2010. A population model for the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), in a Korean orchard system. Ecol. Model. 221:268-280. https://doi.org/10.1016/j.ecolmodel.2009.10.006
  12. Kim. J.-K., J.-J. Park, C.H. Pak, H. Park, and K. Cho. 1999. Implementation of yellow sticky trap for management of greenhouse whitefly in cherry tomato greenhouse. J. Kor. Soc. Hort. Sci. 40:549-553.
  13. Kim, J.-K. J.-J. Park, H. Park, and K. Cho. 2001. Unbiased estimation of greenhouse whitefly, Trialeurodes vaporariorum, mean density using yellow sticky trap in cherry tomato greenhouses. Entomol. Exp. Appl. 100:235-243. https://doi.org/10.1046/j.1570-7458.2001.00868.x
  14. Maywald, G.F., D.J. Kriticos, R.W. Sutherst, and W. Bottomley.2007. DYMEX model builder version 3: User's guide. Hearne Scientific Software Pty. Ltd., Melbourne, Australia.
  15. Meteorological Research Institute - Korea Meteorological Administration (MRI-KMA). 1990. Simulation of the greenhouse and plant canopy microclimates (I) - Studies on the meteorological elements and heat fluxes. MRI-KMA, Seoul, Korea.
  16. Meteorological Research Institute - Korea Meteorological Administration (MRI-KMA). 1991. Simulation of the greenhouse and plant canopy microclimates (II). MRI-KMA, Seoul, Korea.
  17. Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF). 2002. Development of expert system for commercial greenhouse insect pest. MIFAFF, Seoul, Korea.
  18. Muniyappa, V. 1980. Whiteflies, p. 39-85. In: K.F. Harris and K. Maramerosch (eds.). Vectors of plant pathogens. Academic press, N.Y.
  19. Nechols, J.R. and M.J. Tauber. 1977. Age-specific interaction between the greenhouse whitefly and Encarsia formosa: Influence of host on the parasite's oviposition and development. Environ. Entomol. 6:143-149. https://doi.org/10.1093/ee/6.1.143
  20. Osborne, L.S. 1982. Temperature-dependent development of greenhouse whitefly and its parasite Encarsia formosa. Environ. Entomol. 11:483-485. https://doi.org/10.1093/ee/11.2.483
  21. Paravisani, L. 1981. Influenza delle temperature sui rapport ospite-parassita in Trialeurodes vaporariorum (Westwood) in Encarsia formosa Gahan. Mem. Soc. Ent. Ital. Genova 60:299-303.
  22. Park, J.-J., J.-H. Lee, K.-I. Shin, S.E. Lee, and K. Cho. 2011. Geostatistical analysis of the attractive distance of two different sizes of yellow sticky traps for greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae), in cherry tomato greenhouses. Aust. J. Entomol. 50:144-151. https://doi.org/10.1111/j.1440-6055.2010.00796.x
  23. Park, J.-J., K.-I. Shin, and K. Cho. 2004. Evaluation of data transformations and validation of a spatial model for spatial dependency of trialeurodes vaporariorum populations in a cherry tomato greenhouse. J. Asia Pac. Entomol. 7:289-295. https://doi.org/10.1016/S1226-8615(08)60229-0
  24. Park, M.K., I.G. Kim, Y.H. Song, J.-H. Lee, K.-I. Shin, and K. Cho. 2009. Effect of nitrogen levels of two cherry tomato cultivars on development, preference and honeydew production of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). J. asia Pac. Entomol. 12:227-232. https://doi.org/10.1016/j.aspen.2009.04.004
  25. Rosenberg, N.J., B.L. Blad, and S.B. Verma. 1983. Microclimate: The Biological Environment. Wiley, N.Y.
  26. Rural Development Administration (RDA). 2001. Tomato cultivation. RDA, Suwon, Korea.
  27. SAS Institute. 1995. SAS user's guide, 6.13 ed. SAS Institute, Cary, NC.
  28. Southwood, T.R.E. 1978. Ecological methods. 2nd ed. Chapman and Hall, London.
  29. van Lenteren, J.C. 1989. Modelling population growth of greenhouse whitefly. Agricultural University Wageningen Papers 89-2.
  30. van Roermund, H.J.W. and J.C. van Lenteren. 1992. The parasite - Host relationship between Encarsia formosa (Hymenoptera: Aphelidae) and Trialeurodes vaporariorum (Homoptera: Aleryoridae) XXXIV. Life-history parameters of the greenhouse whitefly, Trialeurodes vaporariorum as a function of host plant and temperature. Agricultural University Wageningen Papers 92-3.
  31. Wagner, T.L., H.I. Wu, P.J.H. Sharpe, R.M. Schoolfield, and R.N. Coulson. 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Amer. 77:208-225. https://doi.org/10.1093/aesa/77.2.208
  32. Weber, H. 1931. Lebensweise und Umweltbeziehungen von Trialeurodes vaporariorum (Westwood) (Hymenoptera: Aleyrodina). Erster Beitrag zu einer Monographie dieser Art. Zoomorphology 23:575-753.
  33. Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech.-T. ASME 18:293-297.
  34. Willmer, P.G. 1982. Microclimate and the environmental physiology of insects, p. 1-57. In: M.J. Berridge, J.E. Treherne, and V.B. Wigglesworth (eds.). Advances in insect physiology. Vol. XVI. Academic Press, N.Y.