• Title/Summary/Keyword: 비산발생

Search Result 278, Processing Time 0.028 seconds

Development of a Pavement Cutter for Eco-friendly Road Excavation Construction (친환경 도로굴착 시공을 위한 도로절단기 개발)

  • Kim, Kyoontai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.111-118
    • /
    • 2022
  • Recently, as underground facilities buried under roads in Korea are aging, the amount of underground facility maintenance work is rapidly increasing. For the maintenance and management of such underground facilities, the cutting work of the road pavement should be preceded. However, the conventional road pavement cutters used in Korea are not eco-friendly, and the reality is that they generate a lot of noise and cutting sludge (scattering dust). Therefore, in this study, the concept of the cutting sludge recovery device was derived, and an eco-friendly pavement cutter including this function was designed and manufactured. The developed equipment took about 20 to 30 seconds to cut 1m to a depth of 100 to 150mm. Also, the sludge suction performance was good in most sections, and the noise level of the equipment briefly measured at a distance of 2m was 82.7dB on average. However, due to the limitation that the developed equipment was at the level of the first prototype, the driving stability was somewhat low, and equipment abnormalities such as engine shutdown and sludge recovery performance decreased in some cases. The cutting performance and sludge recovery function will be more stable through tuning and improvement of the developed prototype in the future. In addition, we plan to quantitatively compare and analyze productivity by applying the improved prototype to actual field conditions.

Fire-Retardation Properties of Silicone/Perlite Composites (실리콘/펄라이트 복합체의 난연 특성)

  • Lee, Byunggab;Won, Jongpil;Jang, Ilyoung;Bang, Daesuk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.154-154
    • /
    • 2011
  • 최근 세계 각지에서 발생하는 대규모 터널 화재사고는 많은 사상자를 동반하고 이에 따른 경제적, 사회적 손실 또한 방대하게 진행되는 실정이다. 터널 구조물의 화재 특성상 외부에 쉽게 노출되지 않기 때문에 화재 발생 시 화재에 노출된 표층이 박리되거나 비산해서 단면결손이 생기는 폭렬 현상(explosive spalling)이 발생하게 된다. 이러한 폭렬 현상은 붕괴와 같은 대형 참사로 이어질 가능성이 크다. 따라서 본 연구에서는 터널 내 화재 발생 시 콘크리트 구조물의 폭렬에 의한 붕괴를 예방하기 위하여 이액형 상온경화 실리콘 고무와 인체에 무해한 친환경 첨가제인 펄라이트를 일정한 혼합비(5wt%, 10wt%, 15wt%, 20wt%)로 혼합하여 고성능 난연 복합체를 제조하고, 열적 특성과 난연 특성을 연구를 진행하였다. 열적 특성에 관한 시험으로 TGA를 측정하였으며, 난연 특성에 관한 시험으로는 화염 시험, 내화로 시험, 탄화로 시험을 진행하였다. 우선 TGA 시험은 $20^{\circ}C/min$ 승온 속도로 $800^{\circ}C$까지 실험을 하였고, 화염 시험은 제작한 시편과 gas torch($1200^{\circ}C$)의 화염 거리를 약 10cm로 하여 약 1시간 동안 시험을 하였다. 내화로 시험은 내화로 장치를 이용하여 RABT curve(5분만에 $1200^{\circ}C$도달 후 한 시간 동안 유지 후 냉각, 총 시험 시간 180분) 조건을 만족하는 환경에서 제작한 시편을 콘크리트에 부착하여 콘크리트의 내부온도를 측정하였다. 탄화로 시험은 탄화로 장치를 이용하여 $2^{\circ}C/min$ 승온속도로 $900^{\circ}C$까지 실험을 하여 외부 형태 변화를 관찰하였다. 각각의 시험 결과 TGA 열분해 결과 순수한 실리콘 고무보다 난연제인 펄라이트를 첨가했을 때 더 높은 온도에서 초기 분해 거동을 보였으며, 최종 잔류량은 80%를 보였고, 5 wt%의 펄라이트가 혼합된 시편의 최종 잔류량이 높은 것으로 보아 열분해에 가장 강한 조성임을 알 수 있었다. 화염 시험 결과 펄라이트가 혼합된 모든 시편에서 $300^{\circ}C$가 넘지 않은 결과를 보였다. 이는 제조된 복합체가 화염에 직접적으로 장시간 노출이 되어도 안전하다는 것을 알 수 있다. 내화로 및 탄화로 시험 결과 펄라이트가 15wt%와 20wt%가 첨가된 시편들보다 5wt%와 10wt% 첨가된 시편들이 고온에서 안정하다는 것을 보였다.

  • PDF

Evaluation of Environmental Benefit and Cost for Management of Air Quality - [Based on Fine Dust Pollution on Donghae Harbor] (공기질 관리에 관한 환경 비용편익 연구[동해항만 주변 미세먼지오염을 기준])

  • Kim, Eun-Joo;Lee, Choon-Gil;Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.561-569
    • /
    • 2012
  • Study attempts to evaluate the environmental cost and benefit for management of particulate matters of Donghae harbor in Gangwondo. The level of fine dust suspended in the vicinity of the harbor was quite high, exceeding the national standard ($100{\mu}g/m^3$) depending on the places. The test field harbor deals with lots of limestone and coal, so that fine particulates could be generated while loading it and unloading. It was estimated that the direct handling of cargos might produce 12 tons of PM10(Particulate Matters of $10{\mu}m$) a year. In addition, heavy vehicles for transportation of various cargos including raw materials emit huge amount of diesel soots and cause to redispersion of road dust. The local government spends more than 2 billion won every year, and it contributes to reduce the atmospheric dust. According to the prediction of cost to benefit, it will present the effectiveness in 720 % maximum and at least 240 %.

Changes of Chemical and Microbial Properties of Soils after Forest Fires in Coniferous and Deciduous Forests (침엽수와 활엽수 산림에서 산불 후 토양화학적 및 토양미생물학적 특성 변화)

  • Kim, Jong-Gap;O, Gi-Cheol
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This study was carried out to examine the recovery of forest ecosystem by changes of soil chemical properties and soil microorganism at the burned areas of coniferous (Mt. Chocdae) and broad leaved forest (Samsinbong in Mt. Chiri). In the soil chemical properties of the burned area of Samsinbong, pH was 5.8, and contents of organic matter, total nitrogen, available P₂O/sub 5/, exchangeable K/sup +/, exchangeable Ca/sup ++/ and exchangeable Mg/sup ++/ were 7.42%, 0.73%, 28.5 ㎎/㎏, 1.3 me/100g, 13.3 me/100g and 2.2 me/100g, respectively. But they showed a tendency to decrease with time. In the soil chemical properties of the burned area of Mt. Chocdae, pH was 5.3, and contents of organic matter, total nitrogen, available P2O5, exchangeable K/sup +/, exchangeabe Ca/sup ++/ and Exchangeable Mg/sup ++/ were 6.42%, 0.25%, 24.4 ㎎/㎏, 0.7 me/100g, 3.7 me/100g and 2.1 me/100g, respectively, and they also showed a tendency to decrease with time. In contrast, they were not changed with time at the unburned areas. At the burned area of Samsinbong, soil microorganism showed to order of fungi (69×10⁴ CFU), actinomycetes (523×10⁴ CFU) and aerobic bacteria (291×10⁴ CFU), and at the unburned area, showed to order of actinomycetes (745×10⁴ CFU), fungi (594×10⁴ CFUU), and aerobic bacteria (160×10/sup 4/ CFU). At the burned area of Mt. Chocdae, soil microorganism showed to order of fungi (676×10⁴ CFU), actinomycetes (434×10⁴ CFU) and aerobic bacteria (350×10⁴ CFU), and at the unburned area, showed to order of fungi (461 ×10⁴ CFU), aerobic bacteria (328×10⁴ CFU) and actinomycetes (319×10⁴ CFU). Soil microorganisms of the aerobic bacteria, actinomycetes and fungi appeared at the burned areas were much more abundant than unburned areas. The aerobic bacteria appeared at the coniferous forest were also much more than the broad-leaved forest. The actinomycetes and fungi appeared at the broad-leaved forest were much more abundant than the coniferous forest.

  • PDF

Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions (혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향)

  • Park, Jong-Chan;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Soil respiration under flooded conditions is considered to be very small compared with aerobic soil respiration of soil organic matter. However, anaerobic decomposition of soil plays a key role in carbon cycling in flooded ecosystems. On the other hand, coal-ash wastes, such as fly ash and bottom ash, are known to function as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in up land soils. In this study, we investigated bottom ash as a soil amendment for mitigating $CO_2$ emission, and thus enhancing carbon sequestration under anaerobic conditions. We observed that amendment of bottom ash without external organic source led to significant reduction in $CO_2$ emission rate and in total cumulative $CO_2$ emission flux over the incubation period, which was proportional to the amount of bottom ash applied. We also found that soil microbial biomass increased in response to application of bottom ash. These results suggest that bottom ash can be utilized to store $CO_2$ as a stable soil organic carbon in flooded ecosystems, as in aerobic situations.

Trends of Research and Practical Use on Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete (고강도콘크리트의 폭렬대책공법에 대한 국내외 현황과 성능적 구조내화설계를 위한 과제)

  • Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.935-940
    • /
    • 2008
  • When reinforced concrete is subjected to high temperature as in fire, there is deterioration in its properties of particular importance are loss in compressive strength, cracking and spalling of concrete, destruction of the bond between the cement paste and the aggregates and the gradual deterioration of the hardend cement paste. Assessment of fire-damaged concrete usually starts with visual observation of color change, cracking and spalling of the surface. In this paper, it was reported the trends of research and practical use on the Explosive Spalling Properties and Performance Based of Structural Design of the High-Strength Concrete.

  • PDF

A Study on Impact Monitoring Using a Piezoelectric Paint Sensor (압전 페인트 센서를 활용한 충격 모니터링 활용 방안)

  • Choi, Kyungwho;Kang, Donghoon;Park, Seung-Bok;Kang, Lae-Hyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • The piezoelectric paint sensor is a paint type sensor comprising of an epoxy and piezoelectric powder, which is the main component of a piezoelectric material. This sensor can be easily attached to any type of structure as compared to other sensors because it is viable to directly apply it on structures, as in the case with a typical paint. In this study, the capability of piezoelectric paint sensor for impact detection was evaluated. In Particular, the applications of the piezoelectric paint sensor for railroad vehicles were considered. There have been various cases reported about the damages caused by flying gravel to the under-cover of the railroad vehicle during operation. In order to prevent this, real-time monitoring of the large under-cover surface of the railroad vehicle is unavoidable. Under the assumption of vehicle application, sensor sensitivities were measured after multiple and prolonged exposure to thermal cycle environment $-20{\sim}60^{\circ}C$). Sensitivity evaluation of paint sensor under environmental conditions was conducted in an aluminum specimen. In results, despite the small variations in sensitivity, we could confirm the applicability of this paint sensor for impact detection even after a severe environmental exposure test.

A Review on Spalling Phenomenon of High Strength Concrete during a Fire Accident (화재시 고강도 콘크리트의 폭열현상에 관한 고찰)

  • Kim, Hyung-Doo
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.80-86
    • /
    • 2006
  • This study focuses on spalling phenomenon which is the one of the main issues of high strength concrete. The definition, classification and characterization, causes and the reaction mechanism of the spalling were investigated on the basis of previous literatures. The spalling phenomenon occurs when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis o f the factors, the preventing methods from the spalling are known as decrease of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the controlling method of water content below some critical value was proposed as the most effective spalling-preventing method among the spalling-preventing methods. The spalling phenomenon can be prevented by adjusting the water content in the high strength concrete. Therefore, an enforced drying method is needed to decrease the water content below a critical value. Additional experimental data should be generated to determine the critical value of water content for preventing the spalling.

Characterization of Wood Chip Ash Generated from a Power Plant (열병합 발전소에서 발생한 우드칩 분진에 대한 특성 분석)

  • Bang, Jung Won;Kim, Soo-Ryong;Kim, Younghee;Kim, Mido;Kang, Won-Seok;Cho, Kye-Hong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • The amount of the wood chip ash is expected to increase continuously as demand of wood chip-based heat and electricity increase. Thus, there is increased interest in wood chip ash utilization. In this study, as a program of utilization in wood chip ash, the physical and chemical properties of wood chip ashes generated from a combined heat and power plant were investigated. The chemical analysis showed that the main contents of wood chip ash are composed of silica, alumina and alkali. A possibility of reuse as secondary cementitious materials was investigated by the analysis of strength activity index, and compared with coal ash. The highest value for Strength activity index of wood chip fly ash was 78% at 90 days curing time. This result revealed that wood chip fly ash has the potential to be utilized as the admixture for cementitious material.

A Feasibility Analysis of a Low Noise and Dust Suction Type Pavement Cutter (저소음·분진회수형 도로절단기 개발의 타당성 분석)

  • Kim, Kyoon Tai
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 2020
  • A large amount of fine dust is generated during the process of pavement cutting. Consequently, reducing the amount of fine dust generated during pavement cutting is crucial for the overall management of fine dust. Based on this premise, in this study, a conceptual model is proposed for a device that can be employed for recovering scattered dust generated at the site of pavement cutting. The economic feasibility associated with the incorporation of the proposed model was analyzed. Results obtained from the economic feasibility analysis of the proposed conceptual model indicate that the benefit ratio is 2.96, which is significantly higher than 1. The rate of return is found to be 62.78%, which significantly exceeds the minimum expected rate of return (i.e., 10%), as established on the basis of interviews conducted with companies that implement pavement cutting. Furthermore, the break-even point is found to be at approximately 21.6 months. Hence, the proposed pavement cutter, which features dust suction and a low noise level, is economically feasible.