After Nakanishi and Cooper(1982) suggested a way of transforming the complicated nonlinear MCI model into a simple linear form, the application of MCI model has been increased. However, the use of MCI model in Korea is quite limited. The goal of this paper is to demonstrate the practical application of MCI(Multiplicative Competitive Interaction) model to a consumer goods industry. MCI model is a form of the attraction model explaining the relation between marketing mix variables and market share. In this study, multiple sources of empirical data are incorporated in the model formulation stage. In the estimation process, the equity estimation is applied to solve the possible multi-collinearity problem among marketing mix variables. Results from the fitted model suggest meaningful managerial implications for the management of brand equity and the allocation of resources among marketing mix variables.
Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.
Despite the fact that the optimal design for nonlinear model depends on the unknown quantity of parameter to estimate basically, its popularity is growing in bio and engineering statistics area since all those models in the area are virtually nonlinear. In this paper we have dealt with the case when the researcher has multiple objectives in experimentation, decision among the competing models, protection against the departure from the assumed model, and the con icting interests among design criteria. To tackle these issues we attempted several new approaches which are taking advantage of the easiness of constrained optimal design. Several nonlinear models were tested.
본 논문에서는 반응변수가 두 가지의 값을 갖는 회귀분석에 적용할 수 있는 사영추적회귀를 고려하였다. 회귀모형에 필요한 설명변수들의 선형결합이 하나이고 연결함수의 형태를 사전에 알지 못한다는 가정하에서 모의담금질 기법을 이용하여 모형에 필요한 선형결합을 찾는 알고리즘을 제시하였다. 이진 반응변수의 경우에는 평활모수의 값에 따라 잔차이탈도함수의 반응표면이 단봉의 형태를 갖지 않는 경우가 있어 비동질적 마코프체인을 이용한 모의담금질 기법을 적용하면 효율적으로 선형결합을 탐색할 수 있다.
Proceedings of the Korea Society for Industrial Systems Conference
/
1998.10a
/
pp.807-813
/
1998
이 논문에서는 로그정규분포에 대한 베이지안 모형선택방법을 제안한다. 일반적으로 , 모수에 대한 사전정보가 비정보적(noninformative)인 경우, 베이즈 요인(Bayes factor)은 결정할 수 없는 상수를 포함하는 것이 일반적이다. 이 경우, 베이즈 요인을 계산하기 위해 최근 활발히 연구중인 고유 베이즈 요인(Intrinsic Bayes factor)방법을 이용한다. 실제의 자료를 통해 로그정규분포의 적합도 검정에 대한 부분적 베이즈 요인을 계산한다.
Proceedings of the Korean Statistical Society Conference
/
2001.11a
/
pp.95-97
/
2001
공간자료의 예측문제에 있어 전통적 예측방법인 크리깅방법과 최근 통계적문제 적용되기 시작한 신경망분석방법 간의 비교를 사례연구를 통해 행하였다. 일반적으로 크리깅에 의한 선형예측은 공간자료에 대한 일반적 통계모형으로서 간주되어 왔다. 한편 예측문제에 있어 뉴럴네트워크에 기초한 비모수적 방법이 관심의 대상이 되고 있으며 특히 대용량 자료의 경우 데이터마이닝 기법의 한 분야로 널리 사용되고 있는 실정이다. 본 연구에서는 공간 자료의 예측에 있어 유전자 알고리즘을 신경망분석 모형을 결합하여 기존의 크리깅방법과의 예측력을 비교한다.
Communications for Statistical Applications and Methods
/
v.18
no.2
/
pp.245-255
/
2011
There are two nonparametric methods that use empirical distribution functions and probability density estimators for the test of the distribution change of data. In this paper we investigate the two methods precisely and summarize the results of previous research. We assume several probability models to make a simulation study of the change point analysis and to examine the finite sample behavior of the two methods. Empirical powers are compared to verify which is better for each model.
본 연구는 Wilcoxon Rank Sum Test 기법을 이용한 자동 돌발상황 검지 모형을 개발하는 것이다. 본 연구의 수행을 위하여 고속도로에 설치된 루프 차량 검지기(Loop Vehicle Detection System)에서 수집된 점유율 데이터를 사용하였다. 기존의 검지모형은 산정하기가 까다로운 임계치에 의하여 돌발상황을 검지하는 방식이었다. 반면 본 연구 모델은 위치와 시간대 교통 패턴에 관계없이 모형을 일정하게 적용하며, 지속적으로 돌발상황 지점과 상·하류의 교통패턴을 비교 검정 기법인 Wilcoxon Rank Sum Test 기법을 사용하여 돌발상황 검지를 수행하도록 하였다. 연구모형의 검증을 위한 테스트 결과 시간과 위치에 관계없이 정확하고 빠른 검지시간(돌발 상황 발생 후 2∼3분)을 가짐을 알 수 있었다. 또한 기존의 모형인 APID, DES, DELOS모형과 비교검증을 위하여 검지율 및 오보율 테스트를 수행한 결과 향상된 검지 능력(검지율 : 89.01%, 오보율 : 0.97%)을 나타남을 알 수 있었다. 그러나 압축파와 같은 유사 돌발상황이 발생되면 제대로 검지를 하지 못하는 단점을 가지고 있으며 향후 이에 대한 연구가 추가된다면 더욱 신뢰성 있는 검지모형으로 발전할 것이다.
Journal of the Korea Society of Computer and Information
/
v.10
no.6
s.38
/
pp.17-26
/
2005
In this paper we propose three nonparametric tests such as Wilcoxon test, Median test and Van der Waerden test, based on linear rank statistics for detecting edges in images. The methods used herein are based on detecting changes in gray-levels obtained using an edge-height parameter between two sub-regions in a 5$\times$5 window We compare and analysis the performance of three statistical edge detectors in terms of qualitative measures with the edge maps and objective, quantitative measures.
한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.