시간/경제적 문제 혹은 수집 대상의 제한으로 충분한 수의 학습패턴을 모을 수 없는 경우에 인간의 두뇌를 모방한 교사학습 및 비교사학습 모델을 이용하여 새로운 학습패턴을 생성하는 알고리즘을 제안하였다. 비교사학습은 독립성분분석을 사용하여 패턴의 특성을 분석 후 생성하며, 교사학습은 다층퍼셉트론 모델을 사용하여 생성된 패턴의 검증을 하는 단계로 적용되었다. 통계학적으로 이와 같은 형태의 패턴 생성을 분석하였으며, 필기체 숫자의 학습 패턴 수를 변동시키면서 패턴 생성의 효과를 시험패턴에 대한 오인식률로 확인한 결과 성능이 향상됨을 보였다.
에러 역전파 신경망에서 학습속도와 수렴률은 초기 가중의 분포에 따라 크게 영향을 받는다. 본 연구에서는 이를 위하여 비교사 학습 신경망(Hebbian learning rule)을 이용한 새로운 초기 가중치 결정 방법을 제안한다. 또는 비교사 학습 신경망이 에러 역전파 신경망 학습에 적당하도록 은닉층의 각 뉴런과 연결된 가중치의 norm을 이용하여 학습하였다. 시뮬레이션을 통하여 기존 에러 역전파 신경망 학습과 그 성능을 비교한 결과 제안한 초기 가중치 표현이 학습속도와 수렴능력에서 우수함을 나타낸다.
종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.
일반적으로 기계학습은 교사신호의 유무에 따라 교사학습과 비교사학습, 그리고 간접교사에 의한 강화학습으로 분류할 수 있다. 강화학습이란 용어는 원래 실험 심리학에서 동물의 학습방법 연구에서 비롯되었으나, 최근에는 공학 특히 인공생명분야에서 뉴럴 네트워크의 학습 알고리즘으로 많은 관심을 끌고 있다. 강화학습은 제어기 또는 에이전트의 행동에 대한 보상을 최대화하는 상태-행동 규칙이나 행동발생 전략을 찾아내는 것이다. 본 논문에서는 최근 많이 연구되고 있는 강화학습의 방법과 연구동향을 소개하고, 특히 인공생명 연구에 있어서 강하학습의 중요성을 역설한다.
본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.
일반적으로 자기구성 지도에서는 구조가 초기에 결정되어 학습이 끝날때까지 변하기 않기 때문에 각 문제에 대한 구조를 반복된 실험을 통해서 최적화시켜야 한다. 그러나, 지도의 구조가 학습중에 적절하게 변경된다면, 해당 문제에 가장 알맞은 구조의 지도를 생성할 수 있을 것이다. 이 논문에서는 기존의 적응형 자기 구성 지도의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기 구성 지도 모델을 제안한다. 이 방법은 일반적인 자기구성 지도 알고리즘보다 작은 수의 노드를 가지고 높은 성능을 보일 뿐만 아니라, 자기 구성 지도의 특성인 위상 보존도 잘 이루어진다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.
RBF 네트워크에서 기저함수의 위치는 네트워크의 성능에 매우 큰 영향을 미친다. 몇몇 응용들에서 교사학습을 이용한 기저함수의 위치 선정이 비교사학습에 비해 우수함을 보인다. 그러나 교사학습에 의한 네트워크는 시그모이드 네트워크와 같은 긴 학습시간을 필요로 한다. 본 논문에서는 오차함수의 gradient와 Hessian을 이용해 교사학습에서 요구하는 학습시간을 단축시키면서 기저함수의 최적위치를 추정하였다.
문서분류기의 개발에 있어 교사학습기법을 이용할 경우 많은 양의 사람에 의한 범주 부착 말뭉치가 필요하다. 그러나 이의 구축은 많은 시간과 노력을 필요로 한다. 최근 이러한 범주 부착 말뭉치 대신 원시말뭉치와 범주마다 약간의 씨앗 정보를 이용하여 학습을 수행하여 문서분류기를 개발하는 방법론이 제시되었다. 본 논문에서는 이 방법론 하에서 다른 연구에서의 결과보다 좋은 성능을 나타내는 비교사 학습 기법을 소개한다. 본 논문에서 제시하는 기법의 특징은 씨앗 단어에서 출발하여 평균상호정보를 이용하여 다른 대표단어 및 그들의 가중치를 학습한 다음, 정보검색에서 많이 사용하는 기술을 이용하여 그 가중치를 갱신하는 것이다. 그리고 이 과정을 반복 수행하여 최종적으로 높은 성능의 시스템을 개발할 수 있음을 제시하였다.
다층 퍼셉트론 학습은 학습 데이터의 능동적인 선택 여부에 따라 능동적 학습(Active learning)과 피동적 학습(Passive learning)으로 구분할 수 있다. 기존의 능동적 학습 방법들은 학습 데이터의 중요도를 측정할 수 있는 기준(measure)을 제시하고 이 기준에 따라 학습 데이터를 선택하는 방법을 취하고 있다. 이 방법들은 학습 데이터 선택을 위해 Hessian Approximation과 같은 복잡한 계산이나 학습 데이터를 선택하는 과정에 있어서 데이터의 중요도를 평가하기 위한 반복적인 계산을 필요로 한다. 본 논문에서는 학습 데이터 선택 시 반복적인 계산이 필요하지 않는 비교사 학습을 이용한 능동적 학습 데이터 선택 방법을 제안하고 그 수렴 특성과 일반화 성능을 분석한다. 또한 비교 실험을 통하여 제안된 방법이 기존의 능동적 학습방법보다 간단한 계산만으로 수렴 속도를 향상시키며 일반화에도 뒤떨어지지 않음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.