• 제목/요약/키워드: 비교사학습

검색결과 157건 처리시간 0.024초

교사학습과 비교사학습의 접목에 의한 두뇌방식의 지능 정보 처리 알고리즘 개발: 학습패턴의 생성 (Development of Brain-Style Intelligent Information Processing Algorithm Through the Merge of Supervised and Unsupervised Learning: Generation of Exemplar Patterns for Training)

  • 오상훈
    • 전자공학회논문지CI
    • /
    • 제41권6호
    • /
    • pp.61-67
    • /
    • 2004
  • 시간/경제적 문제 혹은 수집 대상의 제한으로 충분한 수의 학습패턴을 모을 수 없는 경우에 인간의 두뇌를 모방한 교사학습 및 비교사학습 모델을 이용하여 새로운 학습패턴을 생성하는 알고리즘을 제안하였다. 비교사학습은 독립성분분석을 사용하여 패턴의 특성을 분석 후 생성하며, 교사학습은 다층퍼셉트론 모델을 사용하여 생성된 패턴의 검증을 하는 단계로 적용되었다. 통계학적으로 이와 같은 형태의 패턴 생성을 분석하였으며, 필기체 숫자의 학습 패턴 수를 변동시키면서 패턴 생성의 효과를 시험패턴에 대한 오인식률로 확인한 결과 성능이 향상됨을 보였다.

교사학습과 비교사 학습의 접목에 의한 두뇌방식의 지능 정보 처리 알고리즘I: 학습패턴의 생성 (Development of Brain-Style Intelligent Information Processing Algorithm Through the Merge of Supervised and Unsupervised Learning I: Generation of Exemplar Patterns for Training)

  • 오상훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2004년도 춘계 종합학술대회 논문집
    • /
    • pp.56-62
    • /
    • 2004
  • 시간/경제적 문제 혹은 수집 대상의 제한으로 충분한 수의 학습패턴을 모을 수 없는 경우에 인간의 두뇌를 모방한 교사학습 및 비교사학습 모델을 이용하여 새로운 학습패턴을 생성한 후 이를 이용하여 학습한 경우 성능이 향상됨을 보였다.

  • PDF

에러 역전파 학습 성능 향상을 위한 초기 가중치 결정에 관한 연구 (A Study of Initial Determination for Performance Enhancement in Backpropagation)

  • 김웅명;이현수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.333-335
    • /
    • 1998
  • 에러 역전파 신경망에서 학습속도와 수렴률은 초기 가중의 분포에 따라 크게 영향을 받는다. 본 연구에서는 이를 위하여 비교사 학습 신경망(Hebbian learning rule)을 이용한 새로운 초기 가중치 결정 방법을 제안한다. 또는 비교사 학습 신경망이 에러 역전파 신경망 학습에 적당하도록 은닉층의 각 뉴런과 연결된 가중치의 norm을 이용하여 학습하였다. 시뮬레이션을 통하여 기존 에러 역전파 신경망 학습과 그 성능을 비교한 결과 제안한 초기 가중치 표현이 학습속도와 수렴능력에서 우수함을 나타낸다.

  • PDF

변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습 (Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation)

  • 조현호;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.578-586
    • /
    • 2021
  • 종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.

인공생명의 연구에 있어서 강화학습의 전략 (Strategy of Reinforcement Learning in Artificial Life)

  • 심귀보;박창현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.257-260
    • /
    • 2001
  • 일반적으로 기계학습은 교사신호의 유무에 따라 교사학습과 비교사학습, 그리고 간접교사에 의한 강화학습으로 분류할 수 있다. 강화학습이란 용어는 원래 실험 심리학에서 동물의 학습방법 연구에서 비롯되었으나, 최근에는 공학 특히 인공생명분야에서 뉴럴 네트워크의 학습 알고리즘으로 많은 관심을 끌고 있다. 강화학습은 제어기 또는 에이전트의 행동에 대한 보상을 최대화하는 상태-행동 규칙이나 행동발생 전략을 찾아내는 것이다. 본 논문에서는 최근 많이 연구되고 있는 강화학습의 방법과 연구동향을 소개하고, 특히 인공생명 연구에 있어서 강하학습의 중요성을 역설한다.

  • PDF

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • 강신재;강인수
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2009년도 춘계학술대회 미래 IT융합기술 및 전략
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

비교사 학습과 교사 학습 알고리즘을 결합한 구조 적응형 자기구성 지도 (A Structure-Adaptive Self-Organizing Map with Combination of Supervised and Unsupervised Learning Algorithms)

  • 김현돈;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.333-335
    • /
    • 1999
  • 일반적으로 자기구성 지도에서는 구조가 초기에 결정되어 학습이 끝날때까지 변하기 않기 때문에 각 문제에 대한 구조를 반복된 실험을 통해서 최적화시켜야 한다. 그러나, 지도의 구조가 학습중에 적절하게 변경된다면, 해당 문제에 가장 알맞은 구조의 지도를 생성할 수 있을 것이다. 이 논문에서는 기존의 적응형 자기 구성 지도의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기 구성 지도 모델을 제안한다. 이 방법은 일반적인 자기구성 지도 알고리즘보다 작은 수의 노드를 가지고 높은 성능을 보일 뿐만 아니라, 자기 구성 지도의 특성인 위상 보존도 잘 이루어진다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

RBF 네트웍에서의 기저함수의 최적위치 추정방법 (Estimation of Basis Functions in RBF Networks)

  • 이종필;김성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2576-2578
    • /
    • 2003
  • RBF 네트워크에서 기저함수의 위치는 네트워크의 성능에 매우 큰 영향을 미친다. 몇몇 응용들에서 교사학습을 이용한 기저함수의 위치 선정이 비교사학습에 비해 우수함을 보인다. 그러나 교사학습에 의한 네트워크는 시그모이드 네트워크와 같은 긴 학습시간을 필요로 한다. 본 논문에서는 오차함수의 gradient와 Hessian을 이용해 교사학습에서 요구하는 학습시간을 단축시키면서 기저함수의 최적위치를 추정하였다.

  • PDF

정보검색 기술을 이용한 비교사 학습 기반 문서 분류 시스템 개발 (Developing a Text Categorization System Based on Unsupervised Learning Using an Information Retrieval Technique)

  • 노대욱;이수용;나동열
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.98-106
    • /
    • 2006
  • 문서분류기의 개발에 있어 교사학습기법을 이용할 경우 많은 양의 사람에 의한 범주 부착 말뭉치가 필요하다. 그러나 이의 구축은 많은 시간과 노력을 필요로 한다. 최근 이러한 범주 부착 말뭉치 대신 원시말뭉치와 범주마다 약간의 씨앗 정보를 이용하여 학습을 수행하여 문서분류기를 개발하는 방법론이 제시되었다. 본 논문에서는 이 방법론 하에서 다른 연구에서의 결과보다 좋은 성능을 나타내는 비교사 학습 기법을 소개한다. 본 논문에서 제시하는 기법의 특징은 씨앗 단어에서 출발하여 평균상호정보를 이용하여 다른 대표단어 및 그들의 가중치를 학습한 다음, 정보검색에서 많이 사용하는 기술을 이용하여 그 가중치를 갱신하는 것이다. 그리고 이 과정을 반복 수행하여 최종적으로 높은 성능의 시스템을 개발할 수 있음을 제시하였다.

  • PDF

데이터 중요도의 사전 평가를 이용한 증가학습을 위한 데이터 선택 방법 (Data selection method for Incremental learning using prior evaluation of data importance)

  • 이선영;조성준;방승양
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.339-341
    • /
    • 1998
  • 다층 퍼셉트론 학습은 학습 데이터의 능동적인 선택 여부에 따라 능동적 학습(Active learning)과 피동적 학습(Passive learning)으로 구분할 수 있다. 기존의 능동적 학습 방법들은 학습 데이터의 중요도를 측정할 수 있는 기준(measure)을 제시하고 이 기준에 따라 학습 데이터를 선택하는 방법을 취하고 있다. 이 방법들은 학습 데이터 선택을 위해 Hessian Approximation과 같은 복잡한 계산이나 학습 데이터를 선택하는 과정에 있어서 데이터의 중요도를 평가하기 위한 반복적인 계산을 필요로 한다. 본 논문에서는 학습 데이터 선택 시 반복적인 계산이 필요하지 않는 비교사 학습을 이용한 능동적 학습 데이터 선택 방법을 제안하고 그 수렴 특성과 일반화 성능을 분석한다. 또한 비교 실험을 통하여 제안된 방법이 기존의 능동적 학습방법보다 간단한 계산만으로 수렴 속도를 향상시키며 일반화에도 뒤떨어지지 않음을 보인다.

  • PDF