A Structure-Adaptive Self-Organizing Map with Combination of Supervised and Unsupervised Learning Algorithms

비교사 학습과 교사 학습 알고리즘을 결합한 구조 적응형 자기구성 지도

  • 김현돈 (연세대학교 컴퓨터과학과) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 1999.10.01

Abstract

일반적으로 자기구성 지도에서는 구조가 초기에 결정되어 학습이 끝날때까지 변하기 않기 때문에 각 문제에 대한 구조를 반복된 실험을 통해서 최적화시켜야 한다. 그러나, 지도의 구조가 학습중에 적절하게 변경된다면, 해당 문제에 가장 알맞은 구조의 지도를 생성할 수 있을 것이다. 이 논문에서는 기존의 적응형 자기 구성 지도의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기 구성 지도 모델을 제안한다. 이 방법은 일반적인 자기구성 지도 알고리즘보다 작은 수의 노드를 가지고 높은 성능을 보일 뿐만 아니라, 자기 구성 지도의 특성인 위상 보존도 잘 이루어진다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

Keywords