• Title/Summary/Keyword: 블랍 검출

Search Result 11, Processing Time 0.033 seconds

A TFT-LCD Defect Detection Method based on Defect Possibility using the Size of Blob and Gray Difference (블랍 크기와 휘도 차이에 따른 결함 가능성을 이용한 TFT-LCD 결함 검출)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.43-51
    • /
    • 2014
  • TFT-LCD image includes a defect of various properties. TFT-LCD image have a recognizable defects in the human inspector. On the other hand, it is difficult to detect defects that difference between the background and defect is very low. In this paper, we proposed sequentially detect algorithm from pixels included in the defect region to limited defects. And blob analysis methods using the blob size and gray difference are applied to the defect candidate image. Finally, we detect an accurate defect blob to distinguish the noise. The experimental results show that the proposed method finds the various defects reliably.

Image Analysis for Surveillance Camera Based on 3D Depth Map (3차원 깊이 정보 기반의 감시카메라 영상 분석)

  • Lee, Subin;Seo, Yongduek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.286-289
    • /
    • 2012
  • 본 논문은 3차원 깊이 정보를 이용하여 감시카메라에서 움직이는 사람을 검출하고 추적하는 방법을 제안한다. 제안하는 방법은 GMM(Gaussian mixture model)을 이용하여 배경과 움직이는 사람을 분리한 후, 분리된 영역을 CCL(connected-component labeling)을 통하여 각각 블랍(blob) 단위로 나누고 그 블랍을 추적한다. 그 중 블랍 단위로 나누는 데 있어 두 블랍이 합쳐진 경우, 3차원 깊이 정보를 이용하여 두 블랍을 분리하는 방법을 제안한다. 실험을 통하여 제안하는 방법의 결과를 보인다.

  • PDF

Analysis of Human Activity Using Silhouette And Feature Parameters (실루엣과 특징 파라미터를 이용한 사람 행동 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.923-926
    • /
    • 2011
  • 본 연구에서는 움직이는 물체가 있는 비디오에서 검출된 전경 영상(실루엣)을 토대로 사람을 추적하고 추적된 사람의 실루엣 형상을 통하여 활동성을 인식하는 실시간 감시 시스템에 적용 가능한 사람의 행동을 인식하고 분석하고자 한다. 전경에서 블랍(사람)을 검출하는 방법은 기존에 연구했던 차영상을 이용하였고, 검출된 블랍을 대상으로 사람임을 판단하고 사람인 경우 검출된 블랍의 실루엣을 이용한 기존의 자세 추정 기법에 추가적으로 4가지 특징들을 추가하여 사람의 행동을 분석한다. 각 파라미터들은 임계치를 통하여 구분하였다. 본 논문에서는 사람의 행동은 크게 네 가지의 경우로 {Standing, Bending/Crawling, Laying down, Sitting} 분류한다. 제안된 특징 파라미터들을 추가한 방법은 기존의 실루엣 기반의 자세 추정 기법만을 사용하는 것보다 좀더 높은 인식율을 보여주었다.

  • PDF

Digit Segmentation in Digit String Image Using CPgraph (CPgraph를 이용한 숫자열 영상에서 숫자 분할)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1070-1075
    • /
    • 2019
  • In this paper, I propose an algorithm to generate an input digit image for a digit recognition system by detecting a digit string in an image and segmenting the digits constituting the digit string. The proposed algorithm detects blobbed digit string through blob detection, designates a digit string area and corrects digit string skew using the detected blob information. And the proposed algorithm corrects the digit skew and determines the boundary points for the digit segmentation in the corrected digit sequence using three CPgraphs newly defined in this paper. In digit segmentation experiments using the image group including digit strings printed with a range of the font sizes and the image group including handwritten digit strings, the proposed algorithm successfully segments 100% and 90% of the digits in each image group.

Real-time People Counting System Using Multiple Depth Cameras (다중 심도 카메라를 이용한 실시간 피플 카운팅 시스템)

  • Lee, YongSub;Moon, Namee
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.652-654
    • /
    • 2012
  • 본 논문에서는 다중 심도 카메라 기반의 실시간 피플 카운팅 시스템을 제안 한다. 카메라 영상으로부터 사람을 감지하고 추적하는 시스템 및 그 방법에 관한 것으로, 피플 카운팅 시스템은 쇼핑몰이나 대형건물의 출입구 등과 같은 다양한 환경에 적용될 수 있다. 기존 피플 카운팅 시스템에서의 급격한 조명의 변화나 겹침 현상, 가림 현상에 대한 해결 방법으로, 다중 심도 카메라 환경에서 동일 객체 추적을 위해 RLM(Range Laser Method)를 적용하고, 조명 등 환경 변화에 강인한 배경 제거 및 물체 검출 기법으로 가우시안 혼합 모델(Gaussian Mixture Model)을 적용해 객체인식에 대한 정확도를 높인다. 또한, 객체를 블랍(Blob)으로 지정해 확장 칼만 필터(Extended Kalman Filter, EKF) 방법으로 객체를 추적한다. 본 제안은 피플 카운팅 시스템에의 객체 검출 및 인식에 대한 정확도를 향상시킬 수 있으리라 기대된다.

Analysis of Human Activity Using Motion Vector (움직임 벡터를 이용한 사람 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, We proposed the method of recognition and analysis of human activites using Motion vector in real-time surveillance system. We employs subtraction image techniques to detect blob(human) in the foreground. When MPEG-4 video recording EPZS(Enhanced Predicted Zonal Search) is detected the values of motion vectors were used. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Moving, Non-moving}, {Walking, Running}. Each step was separated using a step-by-step threshold values. We created approximately 150 conditions for the simulation. As a result, We showed a high success rate about 86~98% to distinguish each steps in simulation image.

  • PDF

Defect Inspection of FPD Panel Based on B-spline (B-spline 기반의 FPD 패널 결함 검사)

  • Kim, Sang-Ji;Hwang, Yong-Hyeon;Lee, Byoung-Gook;Lee, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1271-1283
    • /
    • 2007
  • To detect defect of FPD(flat panel displays) is very difficult due to uneven illumination on FPD panel image. This paper presents a method to detect various types of defects using the approximated image of the uneven illumination by B-spline. To construct a approximated surface, corresponding to uneven illumination background intensity, while reducing random noises and small defect signal, only the lowest smooth subband is used by wavelet decomposition, resulting in reducing the computation time of taking B-spline approximation and enhancing detection accuracy. The approximated image in lowest LL subband is expanded as the same size as original one by wavelet reconstruction, and the difference between original image and reconstructed one becomes a flat image of compensating the uneven illumination background. A simple binary thresholding is then used to separate the defective regions from the subtracted image. Finally, blob analysis as post-processing is carried out to get rid of false defects. For applying in-line system, the wavelet transform by lifting based fast algorithm is implemented to deal with a huge size data such as film and the processing time is highly reduced.

  • PDF

A Study on Hand Gesture Recognition with Low-Resolution Hand Images (저해상도 손 제스처 영상 인식에 대한 연구)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Recently, many human-friendly communication methods have been studied for human-machine interface(HMI) without using any physical devices. One of them is the vision-based gesture recognition that this paper deals with. In this paper, we define some gestures for interaction with objects in a predefined virtual world, and propose an efficient method to recognize them. For preprocessing, we detect and track the both hands, and extract their silhouettes from the low-resolution hand images captured by a webcam. We modeled skin color by two Gaussian distributions in RGB color space and use blob-matching method to detect and track the hands. Applying the foodfill algorithm we extracted hand silhouettes and recognize the hand shapes of Thumb-Up, Palm and Cross by detecting and analyzing their modes. Then, with analyzing the context of hand movement, we recognized five predefined one-hand or both-hand gestures. Assuming that one main user shows up for accurate hand detection, the proposed gesture recognition method has been proved its efficiency and accuracy in many real-time demos.

Analysis of Human Activity Using Motion Vector and GPU (움직임 벡터와 GPU를 이용한 인간 활동성 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1095-1102
    • /
    • 2014
  • In this paper, We proposed the approach of GPU and motion vector to analysis the Human activity in real-time surveillance system. The most important part, that is detect blob(human) in the foreground. We use to detect Adaptive Gaussian Mixture, Weighted subtraction image for salient motion and motion vector. And then, We use motion vector for human activity analysis. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}. We created approximately 300 conditions for the simulation. As a result, We showed a high success rate about 86~98%. The results also showed that the high resolution experiment by the proposed GPU-based method was over 10 times faster than the cpu-based method.

Fall Detection System Using Motion Vector (움직임 벡터를 이용한 낙상 감지 시스템)

  • Kim, Sang-Soo;Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2016
  • In this paper, Author of this article presents a system to ensure the safety of residents in case the residents occurs an fall situation. Author of this article use weighted difference image and motion vector. Proposed system suggested the fall detection algorithm using weighted difference image and motion vector. Fall detection algorithm showed a success rate of 85% ~ 97.1% through 150 experiments. Proposed algorithm showed a litter higher or similar success rate than the existing camera based system.