• Title/Summary/Keyword: 붕괴 사면

Search Result 415, Processing Time 0.026 seconds

Stability Evaluation of failed Slope in Gohan, Korea using Numerical Analysis (강원도 정선군 고한 지역 붕괴사면의 수치해석을 이용한 사면안정성 평가)

  • Jang, Hyun-Sic;Lee, Ju-Young;Seo, Yong-Seok;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.511-523
    • /
    • 2014
  • Limit equilibrium analysis and finite difference analysis were used to evaluate slope stability in the in Gohan, Korea, which is affected by large-scale tensile cracks and uplift. There is a thick colluvial layer in the study area and predicting ground behavior is problematic because the presence of clay makes it difficult to determine the strength parameters of the soil. Consequently, a numerical model able to reflect the collapse properties of the site was required that applied the modified boundary layer model and calculated the strength parameters using back analysis. The numerical simulation results that consider the strength parameter one does with the present situation the establishment of the pile is completed, and the simulation is able to asses ground stability in complex terrain in a reliable manner. Also the somewhat it judges with the fact that it will be able to provide the fundamental data which secures the stability of the segment where it is unstable.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

A Simple Design Method Considering Unsaturated Soils Characteristics of Slopes Under Rainfalls (강우시 토사사면의 불포화 특성을 고려한 간편 설계법)

  • Han, Taekon;Kim, Hongtaek;Baek, Seungcheol;Kang, Inkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • Slope collapse occurs mostly at the rainy season or thawing season in Korea. From a engineer point of view, the design criterion in recent of soil slopes during the rainfall have a conservative tendency because a slope stability is evaluated in the condition that ground water level is located in the surface. However, for the rational design of soil slopes during rainfall, the raining conditions and the unsaturated soil characteristics of soil slopes have to be considered. For the unsaturated soil characteristics of soil slopes, the laboratory tests for unsaturated soils and the seepage analyses for the raining conditions have to be performed. Due to these difficulties, a conservative design of soil slopes in the current design criterion has been carried out. In this paper, therefore, a simple design method is proposed. The method is considered to the unsaturated soil characteristics and the results of seepage analysis without numerical analysis. To verify the suggested design method, it is compared with both analysis results by current design criterion and analysis results based on the seepage analysis. Through the comparative study, it was found that the current design criterion has been excessively conservative. Hence, simple design method in this study was evaluated as the rational design for the soil slopes during rainfall.

  • PDF

Problems in Construction of Tunnel and Rock . Slope at Mudstone and Shale Resion (이암/셰일 지역에서의 터널 및 사면 시공시의 문제점)

  • 이내용;김용일;정한중;김영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.115-140
    • /
    • 2002
  • 이암층, 함탄층, 석회암층과 같은 특수지질불량구간에서 터널과 암반사면의 합리적인 시공을 달성하기 위해서는 먼저 대상지질에 대한 지질특성, 암반특성을 정확히 이해하는 것이 필요하며, 지반특성에 적합한 지보대책을 수립하도록 하여야 한다. 본고에서는 전형적인 퇴적암지층으로 알려진 포항지역중 중생대 퇴적암류로부터 신생대 제 3기의 미고결 퇴적암류에 이르는 다양하고 복잡한 지질구조를 이루고 있는 지역에서의 터널 및 암반사면의 시공사례를 통하여 시공중의 제반문제점을 검토하여 이암층에서의 안전하고 합리적인 터널/암반사면의 시공방안에 대하여 고찰하였다.

  • PDF

Case Study on Failure of Rock Slope Caused by Filling Material (충전물에 의한 암반사면 붕괴사례)

  • Kim, Yong-Jun;Kim, Sun-Ki;Kim, Joo-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.87-90
    • /
    • 2007
  • 셰일층으로 구성된 암반사변에서 층리면을 따라 대규모 평면파괴가 사연 중앙부에서 발생하였다. 현장조사시 파괴사면 주변은 지하수 누수 흔적과 점토층의 충전물이 존재하였으며, 파괴원인을 검토한 결과 층리면을 따라 형성된 점토 충전물의 낮은 전단강도와 강우시 인장균열내 형성된 수압에 의해 붕괴가 발생한 것으로 나타났다. 그리고 충전된 절리면의 전단강도 특성을 규명하기 위해서 모래, 점토의 인위적인 충전물을 이용하여 충전재 두께비에 따른 전단강도 특성을 고찰하였다.

  • PDF

Design Considerations for Tied Back Soil Landslide Suppressor Walls (사면붕괴 억제 타이백 벽체 설계에 대한 고찰)

  • Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2009
  • This paper reviews many of the design considerations surrounding the topic of tiedback landslide suppressor walls primarily for soils app1ications. The design requires combining knowledge of many aspects of soil mechanics and geology to obtain a design a wall that fits site specific conditions. Many of the aspects necessary to complete the design are stil1 not comprehensively studied or understood. This paper provides an overview of the more traditional aspects of tieback wall design and a discussion of newer issues such as suppressor wall earth pressures and rotation of stresses due to tiebacks. An overview is also provided regarding the effect of seismic forces.

  • PDF

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

A Case Study of The Collapsed Reinforced-Soil Retaining Wall (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 2004
  • This paper deal with the analysis of the causes about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extraction from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy, which are causes of the collapse.

  • PDF