• 제목/요약/키워드: 분해 속도 상수

검색결과 351건 처리시간 0.098초

저압에서의 사알렌과 디사일렌의 열분해 반응에 관한 연구 (A Study on Pyrolysis of Silane and Disilane at Low Pressure)

  • 한재현;문상흡
    • 한국진공학회지
    • /
    • 제4권4호
    • /
    • pp.350-357
    • /
    • 1995
  • SiH4와 Si2H6를 1-3 Torr 정도의 저압에서 열분해시켰을 때, 반응물의 농도 변화를 살펴보고 이로부터 열분해의 반응 기구를 예측하였다. 분석기로는 질량 분석기를 이용하였으며, 분해 온도 범위는 SiH4의 경우는 $350~475^{\circ}C$, Si2H6의 경우는 275-375$^{\circ}C$이었다. SiH4의 분해 양상은 1차 비가역 반응에 잘 들어 맞았으며, 그 속도 상수는 문헌에 보고되어 있는 상압에서의 속도보다 작았다. Si2H6는 낮은 온도 범위에서도 잘 분해되었으며, 중간 생성물로 많은 양의 SiH4를 만들었다. 그리고, SiH4는 고분자화되는 반응을 거치지 않고 고체실리콘을 생성하지만, Si2H6는 중간 생성물로 만들어진 SiH4와 SiH2에 의하여, 고분자화 반응을 거쳐서 고체실리콘을 만들 수 있음을 알았다.

  • PDF

Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰 (The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System)

  • 최호상;박영태
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.885-888
    • /
    • 1999
  • 본 연구에서는 $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ 반응계의 열분해 탈수반응에 의한 반응속도상수를 결정하고 반응계의 재현성 및 화학축열재의 반복사용에 따른 내구성을 검토하였다. 반응계의 열분해 탈수반응의 차수는 1차이었고, 열분해 탈수 반응속도는 수증기의 분압차에 정비례하였다. 반응계의 반응속도상수는 약 0.27이었고, 반응속도상수와 반응차수에 대한 반응의 재현성이 우수하였다. 또한 화학축열재의 내구성은 연속적으로 반복 사용하여도 활성변화는 ${\pm}5%$ 범위 내에 있었다.

  • PDF

현미와 백미의 저장중 이화학적 성질의 변화 (Changes in Physicochemical Properties of Brown and Milled Rices during Storage)

  • 조은자;김성곤
    • Applied Biological Chemistry
    • /
    • 제33권1호
    • /
    • pp.24-33
    • /
    • 1990
  • 현미와 백미의 조리특성, 색도와 호화특성의 변화를 비교조사하였다. 현미와 백미를 $4^{\circ}$$25^{\circ}C$에 각각 5개월과 3개월간 저장했을 때, 침지온도 $30^{\circ}$에서의 수분흡수속도 상수 값은 백미가 현미보다 약 2.5배 높았고, 저장시간에 따라 직선적으로 감소하였으며 그 정도는 현미 보다 백미가 컸다. 부피증가속도 상수 값도 수분흡수 속도 상수값과 같은 경향을 보였다. 백미의 취반속도는 현미보다 1.8배 빨랐으며, 취반속도상수 값은 저장중 직선적으로 감소하였다. 취반 완료점은 현미가 백미보다 2배 늦었고, 저장 완료후 취반시간은 현미는 8분, 백미는 7분 정도 늦어졌다. 현미립의 색도는 저장에 따라 L값(명도)이 증가하였으나, 백미립은 변화가 없었다. 아밀로그라피에 의한 현미와 백미가루의 초기 호화온도는 변화가 없었으나, 호화점도는 저장에 따라 증가하였으며 $4^{\circ}$의 경우에는 큰 변화가 없었다. 저장중 쌀가루의 시차 주사 열량 측정기에 의한 호화온도는 차이가 없었으나, 호화 엔탈피는 감소하는 경향이었고 현미와 백미의 차이는 크지 않았다.

  • PDF

고압 아임계수 내에서 PET의 분해 (Decomposition of PET in High Pressure Subcritical Water)

  • 정승희;이정훈;심재진;김재성;김선욱
    • Korean Chemical Engineering Research
    • /
    • 제40권6호
    • /
    • pp.709-714
    • /
    • 2002
  • 본 연구의 실험조건에서 poly(ethylene terephthalate)(PET)의 분해반응 속도 연구를 하기 위해서 고압 용융고분자 주입장치를 고안하였다. 회분식 반응기와 고압 용융고분자 주입장치가 결합된 실험 장치를 이용하여 일정압력 250 bar에서 온도를 300, 320, $340^{\circ}C$로 각각 변화시키면서 PET의 분해반응 실험을 수행하였다. 각 온도에서 초기 1분내의 전환율이 76-90%가 될 정도로 매우 높았으며 온도가 증가함에 따라 전환율도 증가하여 반응시간 10분에는 전환율이 98%이상의 높은 값을 보임을 알 수 있었다. 2차 반응에 기초하여 반응속도 상수를 구했으며 이를 이용하여 전환율을 계산하였는데 평균 2%정도의 오차범위로 실험치와 좋은 일치를 보였다. 본 연구에서 얻은 반응속도상수를 이용하여 아임계수 내에서 PET 분해반응의 활성화 에너지를 구하였는데 그 값은 54.4 kJ/mol 이었다.

염화벤질류의 가용매분해반응에 대한 압력의 영향. 에탄올-물 혼합용매내에서 p-메톡시 염화벤질의 분해반응 (The Effect of Pressure on the Solvolysis of Benzylchlorides. p-Methoxybenzyl Chloride in Ethanol-Water Mixtures)

  • 권오천;경진범;최기준
    • 대한화학회지
    • /
    • 제30권3호
    • /
    • pp.301-306
    • /
    • 1986
  • 에탄올-물 혼합용매내에서 p-메톡시 염화벤질의 가용매 분해 반응에 대한 속도상수를 온도 2$^{\circ}$와 10$^{\circ}C$, 압력을 1~1600bar로 변화시켜 가면서 측정하였다. 이 반응의 속도 상수(k)는 온도와 압력이 증가함에 따라 증가하고 에탄올 몰 분율이 증가함에 따라 감소함을 알았다. 또한 이 반응 속도 상수로 부터 (${{\Delta}V_o}^{\neq},\;{\Delta}{\beta}^{\neq},\;{\Delta}H^{\neq}$${\Delta}S^{\neq}$)의 값을 얻었다. 이 때 ${{\Delta}V_o}^{\neq}$${\Delta}{\beta}^{\neq}$는 에탄올 몰분율이 약 0.30인 부근에서 extremum behavior가 나타남을 알았고, 이러한 현상을 용매구조 변화로 논의하였다. 이러한 사실로부터 본 반응은 $S_N1$ 메타니즘이 지배적이며 압력이 증가함에 따라서는 $S_N1$ 성격이 약해짐을 알았다.

  • PDF

환경친화적인 합성기유 후보물질로서의 몇가지 폴리올에스터 오일의 가수분해속도 비교 (Comparison of the Hydrolysis Rate of Several Polyol Ester Oils as a Candidate for Environmentally Adapted Synthetic Base Oil)

  • 한두희;마사부미마스꼬
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.162-177
    • /
    • 2001
  • 분자구조가 서로 다른 7종의 폴리올에스터 오일에 대한 가수분해속도가 측정되었다. 사용된 폴리올에스터는 2가 및 4가의 다가알콜과 서로 다른 탄소수의 직쇄 흑은 분기지방산으로 합성된 다가에스터 화합물이며, 이들의 가수분해반응은 p-톨루엔설폰산을 촉매로 사용하는 온건한 산성조건하에서 수행되었다 폴리올에스터 오일의 가수분해과정에서 생성되 는 부분에스터와 다가알콜 및 지방산 등의 구조가 확인되었고 반응시간의 경과에 따른 가수분해 생성물들의 농도가 측정되었다. 각 반응단계의 속도상수는 속도식과 실험적으로 얻은 각 화합물들의 농도로부터 최소제곱법에 의해 구하였고, 얻어진 가수분해 속도상수가 서로 비교되었다. 폴리올에스터 오일의 가수분해 속도는 지방산의 분자구조에 가장 크게 영향을 받는다. 즉, 직쇄지방산에 의한 폴리올에스터 오일은 분기지방산에 의한 폴리올에스터 오일보다 가수분해속도가 매우 마르며, 분기지방산에 의한 폴리을에스터 오일 중에서는 가지사슬의 모양과 위치가 가수분해속도에 영향을 미치는 것으로 확인되었다. 본연구에서 사용된 7종의 폴리올에스터 오일에 대한 가수분해속도는 물분자가 폴리올에스터 오일의 카르보닐 탄소를 공격할 때 인접한 가지사슬에 의한 입체장애효과를 비교함으로써 효과적으로 설명할 수 있다.

  • PDF

염화나프탈렌술포닐과 피리딘의 친핵성 치환반응에 대한 용매효과 (Solvent Effect on the Nucleophilic Substitution Reaction of Naphthalene Sulfonyl Chloride with Pyridine)

  • 이익춘;엄태섭;성대동;염걸
    • 대한화학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 1983
  • 단일양성자성용매(메탄올, 에탄올, 1-프로판올)와 단일반양성자성용매(아세톤, 아세토니트릴, 아세토페논, 니트로벤젠) 및 이성분혼합용매계(메탄올-아세톤, 메탄올-아세토니트릴, 메탄올-벤젠)에서 염화나프탈렌술포닐과 피리딘의 친핵성치환반응에 미치는 용매효과를 전기전도도법으로 연구하였다. 단일양성자성용매의 반응속도상수는 유전상수가 큰 쪽에서 크게 관측되었고 반양성자성 용매의 반응속도상수는 유전상수가 큰 쪽에서 작게 나타났다. 아세토니트릴은 유전상수가 큰 반양성자성용매인데도 다른 반양성자성용매들보다 속도상수가 크게 관측되었다. 본 친핵성치환반응에서 용매효과는 ${\pi}^{\ast}$가 중요하고 염소이온의 이탈효과보다 수소결합형성이 전이상태를 안정화시키는데 기여함을 알 수 있었다.

  • PDF

Ginsenosides의 처리온도(處理溫度) 및 시간(時閭)에 따른 반응속도론적(反應速度論的) 연구(硏究) (Kinetic Studies on the Thermal Degradation of Ginsenosides in Ginseng Extract)

  • 최진호;김두하;성현순;김우정;오성기
    • 한국식품과학회지
    • /
    • 제14권3호
    • /
    • pp.197-202
    • /
    • 1982
  • 인삼제품제조용(人蔘製品製造用)엑기스의 숙성중(熟成中)에 일어나는 ginsenosides의 분해(分解)에 미치는 온도(溫度)의 영향(影響)을 구명(究明)하기 위하여 숙성온도(熟成溫度) 및 시간(時間)에 따른 ginsenosides의 함량변화(含量變化)로써 분해속도상수(分解速度常數) 및 반감기(牛減期)를 구(求)하였고 분해속도상수(分解速度常數)와 온도(溫度)에 대(對)한 Arrhenius plot에 의하여 활성화(活性化)에너지 및 $Q_{10}$ value를 구(求)하여 ginsenosides의 분해속도상수(分解速度常數)의 온도의존성(溫度依存性)에 대(對)한 관계식(關係式)을 설정(設定)하였다. 가. ginsenosides의 분해반응(分解反應)은 1차반응(次反應)을 나타냈으며 분해시(分解時)의 반감기(半減期)가 $100^{\circ}C$에서 34시간(時間), $90^{\circ}C$에서 70시간(時間), $80^{\circ}C$에서는 131시간(時間)이므로 ginsenosides의 함량변화(含量變化)만을 고려(考慮)한다면 $80^{\circ}C$이하(以下)의$70^{\circ}C$ 부근에서 숙성(熟成)함이 바람직하다. 나. 숙성중(熟成中)에 ginsenoside-Re가 감소(減少)하는 대신 $ginsenoside-Rg_2$가 증가(增加)하고 $ginsenoside-Rg_1$이 감소(減少)하는 대신 $ginsenoside-Rh_1$이 증가(增加)하므로 ginsenosides의 상호변환관계(相互變換關係)가 인정(認定)되었다. 다. ginsenosides의 분해시(分解時)의 온도상화(速度常數)가 $80^{\circ}C$에서 $5.30{\times}10^{-3}\;hr^{-1}$, $90^{\circ}C$에서 $9.90{\times}10^{-3}\;hr^{-1}$, 100"C에서는 $20.50{\times}10^{-3}\;hr^{-1}$으로서 숙성온도(熟成溫度)가 $10^{\circ}C$높아질 때마다 분해속도상수(分解速度常數)가 약(約) 2배(培) 증가(增加)하였고 또 $Q_{10}$ value도 $2.01{\sim}3.49$로서 숙성온도(熟成溫度)가 높아질수록 ginsenosides는 상대적(相對的)으로 불안정(不安定)하였다. 라. ginsenosides분해시(分解時)의 활성화(活性化)에너지 ($E_a$)는 $16.8{\sim}30.1$ kcal/mole의 범위 안에 있으며 ginsenoside-Re 및 $-Rg_1$$ginsenoside-Rb_1,\;-Rb_2$, -Rc 및 -Rd 보다 훨씬 높으므로 troil saponin이 diol saponin보다 온도(溫度)의 영향(影響)을 더 많이 받고 있었다. 마. total ginsenosides의 분해반응시(分解反應時)의 활성화(活性化)에너지($E_a$)는 17.7kcal/mole이었고 분해속도상수(分解速度常數)의 온도의존성(溫度依存性)은 $k=4.574{\times}10^8{\exp}(-8898.8/T)$의 관계식(關係式)으로 표시(表示)할 수 있다

  • PDF

염화아릴메틸의 친핵치환 반응. 이성분혼합용매내에서 9-클로로메틸안트라센의 가용매 분해반응의 속도론적 연구 (Nucleophile Substitution von Arylmethylchloriden. Kinetische Untersuchung der Solvolyse von 9-Chlormethylanthracen in binaren Losungsmittelgemischen)

  • 김왕기
    • 대한화학회지
    • /
    • 제24권6호
    • /
    • pp.413-420
    • /
    • 1980
  • 이 성분 혼합용매(물-아세토니트릴, 물-아세톤, 물-메탄올, 물-에탄올)내에서 9-클로로메틸안트라센의 가용매분해반응에 대한 속도상수를 여러 온도에서 전기전도도법으로 구하고, 활성화파라미터 $E_a$,${\Delta}H^{\neq}$, ${\Delta}S^{\neq}$를 계산하였다. 결과로, 9-클로로메틸안트라센의 가용매 분해반응속도는 비양성자성용매에서 보다 양성자성용매에서 빨랐고, 동일 계열의 용매에서는 유전상수가 큰 쪽에서 반응이 더 빨랐다. 그리고 활성화파라미터의 값들은 물함량이 증가함에 따라 증가하였다. 반응은 $S_N1$ 메카니즘으로 일어났으며, 물은 전이상태에서 친핵체와 일반염기로 관여하였다.

  • PDF

생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성 (Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process)

  • 손희종;황영도;유평종
    • 대한환경공학회지
    • /
    • 제31권3호
    • /
    • pp.186-192
    • /
    • 2009
  • 활성탄 재질별 유입수의 수온 및 EBCT 변화에 따른 의약물질 4종에 대한 생물분해율을 평가한 결과, 수온 및 EBCT가 증가할수록 의약물질 4종에 대한 생물분해율은 급격히 증가하였으며, 활성탄 재질별로는 석탄계 재질의 활성탄이 가장 우수한 생물분해능을 나타내었고, 다음으로 야자계와 목탄계 활성탄 순이었으며, 의약물질별로는 oxytetracycline이 가장 생물분해능이 큰것으로 나타났으며, 다음으로 tetracycline, trimethoprime 및 caffeine 순으로 조사되었다. 의약물질 4종에 대해 석탄계 재질의 활성탄에서의 수온별(5~$25^{\circ}C$) 생물분해 속도상수 및 반감기를 조사한 결과 oxytetracycline의 경우 생물분해 속도상수가 각각 0.0928 $min^{-1}$에서 0.3954 $min^{-1}$으로 증가하였고, 반감기는 7.47분에서 1.75분으로 감소하였다. 또한, caffeine의 경우는 생물분해 속도상수가 각각 0.0360 $min^{-1}$에서 0.2146 $min^{-1}$으로 증가하였고, 반감기는 19.25분에서 3.23분으로 감소하였다.