Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process

생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 황영도 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2008.07.30
  • Accepted : 2009.03.16
  • Published : 2009.03.31

Abstract

In this study, The effects of three different activated carbon materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of pharmaceutical 4 species (oxytetracycline, tetracycline, trimethoprime and caffeine) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the pharmaceutical 4 species removal in BAC columns. In the coal-based BAC columns, removal efficiencies of oxytetracycline and tetracycline were 87~100% and removal efficiencies of trimethoprime and caffeine were 72~99% for EBCT 5~20 min at $25^{\circ}C$. The kinetic analysis suggested a firstorder reaction model for pharmaceutical 4 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for pharmaceutical 4 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of pharmaceutical 4 species ranging from 0.0360~0.3954 $min^{-1}$ and 1.75 to 19.25 min various water temperatures and EBCTs, could be used to assist water utilities in designing and operating BAC filters.

활성탄 재질별 유입수의 수온 및 EBCT 변화에 따른 의약물질 4종에 대한 생물분해율을 평가한 결과, 수온 및 EBCT가 증가할수록 의약물질 4종에 대한 생물분해율은 급격히 증가하였으며, 활성탄 재질별로는 석탄계 재질의 활성탄이 가장 우수한 생물분해능을 나타내었고, 다음으로 야자계와 목탄계 활성탄 순이었으며, 의약물질별로는 oxytetracycline이 가장 생물분해능이 큰것으로 나타났으며, 다음으로 tetracycline, trimethoprime 및 caffeine 순으로 조사되었다. 의약물질 4종에 대해 석탄계 재질의 활성탄에서의 수온별(5~$25^{\circ}C$) 생물분해 속도상수 및 반감기를 조사한 결과 oxytetracycline의 경우 생물분해 속도상수가 각각 0.0928 $min^{-1}$에서 0.3954 $min^{-1}$으로 증가하였고, 반감기는 7.47분에서 1.75분으로 감소하였다. 또한, caffeine의 경우는 생물분해 속도상수가 각각 0.0360 $min^{-1}$에서 0.2146 $min^{-1}$으로 증가하였고, 반감기는 19.25분에서 3.23분으로 감소하였다.

Keywords

References

  1. K$\ddot{u}$mmerer, K., “Significance of antibiotics in the environment,” J. Antimicrobial Chemotherapy, 52, 5-7 (2003) https://doi.org/10.1093/jac/dkg293
  2. 정석찬, 축산용 항생제 관리시스템 구축, 국가 항생제 내성안전관리 사업연구보고서, 식약청(2003)
  3. 강재헌, 메디칼 에세이 : 항생제 남용과 건강, 한국논단, 173, 150-151(2004)
  4. Golet, E. M., Alder, A. C., and Giger, W., “Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland,” Environ. Sci. Technol., 36(17), 3645-3651(2002) https://doi.org/10.1021/es0256212
  5. Petrovic, M., Dolores, M., Hernando, M. D., Silvia Diaz-Cruz, M., and Barcelo, D., “Liquid chromatographytandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review,” J. Chromatography A, 1067(1-2), 1-14(2005) https://doi.org/10.1016/j.chroma.2004.10.110
  6. Van De Steene, J. C., Mortier, K. A., and Lambert, W. E., “Tackling matrix effects during development of a liquid chromatographic-electrospray ionisation tandem mass spectrometric analysis of nine basic pharmaceuticals in aqueous environmental samples,” J. Chromatography A, 1123(1), 71-81(2006) https://doi.org/10.1016/j.chroma.2006.05.013
  7. Choi, K. J., Kim, S. G., Kim, C. W., and Kim, S. H., “Determination of antibiotic compounds in water by online,” Chemosphere, 66, 977-984(2007) https://doi.org/10.1016/j.chemosphere.2006.07.037
  8. Rooklidge, S., Miner, R., Kassim, T., and Nelson, P., “Antimicrobial contaminant removal by multistage slow sand filtration,” J. AWWA, 97(12), 92-100(2005)
  9. Choi, K. J., Kim, S. G., and Kim, S. H., “Removal of antibiotics by coagulation and granular activated carbon filtration,” J. Hazard. Mater., 151(1), 38-43(2007) https://doi.org/10.1016/j.jhazmat.2007.05.059
  10. 손희종, 정종문, 노재순, 유평종, “GAC 공정에서의 sulfonamide계항생물질 흡착특성,” 대한환경공학회지, 30(4), 401-408(2008)
  11. Kim, S. D., Cho, J., Kim, I, S., Vanderford, B., and Snyder, S., “Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters,” Water Res., 41, 1013-1021 (2007) https://doi.org/10.1016/j.watres.2006.06.034
  12. Andreozzi, R., Canterino, M., Marotta, R., and Paxeus, N., “Antibiotic removal from wastewater: the ozonation of amoxicillin,” J. Hazard. Mater., 122, 243-250(2005) https://doi.org/10.1016/j.jhazmat.2005.03.004
  13. Huber, M. M., Korhonen, S., Ternes, T. A., and von Gunten, U., “Oxidation of pharmaceuticals during water treatment with chlorine dioxide,” Water Res., 39, 3607-3617(2005) https://doi.org/10.1016/j.watres.2005.05.040
  14. Snyder, S., Adham, S., Redding, A., Cannon, F., De-Carolis, J., Oppenheimer, J., Wert, E., and Yoon, Y., “Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals,” Desalination, 202, 156-181(2007) https://doi.org/10.1016/j.desal.2005.12.052
  15. Choi, K. J., Kim, S. G., Son, H. J., Roh, J. S., Yoo. P. J., and Kim, S. H., “Comparison of oxidation methods and GAC adsorption in antibiotics removal,” Proceedings of 4th IWA Conference on Oxidation Technologies for Water & Wastewater Treatment, Goslar, Germany(2006)
  16. Elhadi, S. L. N., Huck, P. M., and Slawson, R. M., “Impact of biomass concentrations on the removal of earthy/musty odors from drinking water by biological filters,” Proceedings of 2004 AWWA Annual Conference, June 13-17, Orlando, Florida(2004)
  17. Yang, S. H. and Carlson, K., “Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes,” Water Res., 37, 4645-4656(2003) https://doi.org/10.1016/S0043-1354(03)00399-3
  18. 長澤, “粒狀活性炭表層のおける微生物の動向,” 第41 回 日本水道硏究發表會 發表論文集, 1-3(1990)
  19. APHA, AWWA, WEF, “Heterotrophic plate count,” Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995)
  20. Fuhrman, J. A. and Azam, F., “Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results,” Mar. Biol., 66, 109-120(1982) https://doi.org/10.1007/BF00397184
  21. Parsons, T. R., Maita, Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984)
  22. Bell, R. T., Ahlgren, G. M., and Ahlgren, I., “Estimating bacterioplankton production by the [3H]thymidine incorporation in a eutrophic Swedish Lake,” Appl. Environ. Microbiol., 45, 1709-1721(1983)
  23. 손희종, 류동춘, 김영웅, “회전 드럼형 광촉매 산화장치를 이용한 비스페놀-A 제거,” 화학공학, 39(4), 493-500 (2001)