• 제목/요약/키워드: 분해시간

검색결과 3,196건 처리시간 0.035초

효소를 이용한 저분자 토종 닭발 콜라겐의 제조 및 품질 특성 (Preparation and quality characteristics of low molecular weight collagen treated with hydrolytic enzymes from Korean native chicken feet)

  • 정경아;이창주
    • 한국식품과학회지
    • /
    • 제53권6호
    • /
    • pp.695-700
    • /
    • 2021
  • 본 연구에서는 단백질 가수분해효소 0.1%와 1% Protamex를 사용하여 저분자 콜라겐을 제조하였다. 토종 닭발의 조단백질과 콜라겐의 함량은 일반 육계에 비해 높은 함량이 나타났다. 단백질 가수분해 효소농도와 반응시간이 증가할수록 낮은 분자량의 콜라겐을 얻을 수 있는 것으로 나타났다. 특히 1% Protamex로 7시간 처리한 시료가 1,000-5,000 Da의 저분자 콜라겐 함량이 55.6%로 나타났으며, 평균 분자량은 5,390 Da로 가장 낮은 분자량이 나타났다. 이는 단백질 가수분해효소 Protamex가 고분자 펩타이드 결합을 저분자 펩타이드로 분해했기 때문이다. 효소처리 콜라겐의 조직감은 고분자 펩타이드의 콜라겐이 저분자 펩타이드로 분해되어 gel을 형성하지 못하고 sol의 형태를 유지하였다. 효소농도와 효소반응시간이 증가할수록 콜라겐의 평균분자량은 작아지나 효소반응 5시간부터 평균분자량의 감소가 미미해지는 경향이 나타났다. 따라서 저분자 콜라겐 효소반응시간은 경제적으로 볼 때 5시간에서 7시간 사이가 적합하다고 할 수 있다. 이 연구결과는 향후 산업적 효소를 이용한 저분자 콜라겐 제조 및 식품 소재 활용의 기초자료로 이용할 수 있을 것이다.

가변 시간 분해능 시간 영역 전자파 해석법 (An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept)

  • 김형훈;박종일;김형동
    • 한국전자파학회논문지
    • /
    • 제17권9호
    • /
    • pp.890-894
    • /
    • 2006
  • 본 논문은 무조건 안정의 특징을 갖는 ADI-FDTD의 특성을 효과적으로 적용하기 위한 가변 분해능 시간 영역 전자파 해석법을 제안한다. 제안된 해석법은 관심 주파수 영역에서 정확도를 유지하면서 분해 시간 간격을 증가시켜 계산 시간을 감소시킬 수 있다.

폐타이어 열분해 잔류물로부터 활성탄 제조 (Preparation of activated carbon from waste tire char)

  • 김진욱;임기혁;손병현
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 추계학술논문집 1부
    • /
    • pp.266-268
    • /
    • 2011
  • 본 논문은 폐타이어 열분해 잔류물인 char를 이용하여 수증기 활성화법으로 활성탄을 제조하였다. 활성화 온도가 증가할수록 비표면적은 증가하였으나 활성화 시간에 따른 비표면적은 3시간에서 최대를 보인 후 시간이 지속되면 비표면적은 감소하였다. 본 연구결과, 타이어열분해 잔류물 char를 이용한 활성탄 제조에 있어 최적의 실험조건은 활성화 온도 $850^{\circ}C$, 활성화 시간 3시간, 승온속도 $5^{\circ}C/min$이었으며 이 조건에서 제조한 활성탄의 비표면적은 $517.6m^2/g$으로 나타났다.

  • PDF

산처리 쌀전분의 분자구조와 노화속도 (Relationship between Molecular Structure of Acid-Hydrolyzed Rich Starch and Retrogradation)

  • 강길진;김관;이상규;김성곤
    • 한국식품과학회지
    • /
    • 제29권5호
    • /
    • pp.876-881
    • /
    • 1997
  • 쌀 전분을 1 N 염산용액으로 가수분해하였을 때 가수분해율은 1시간에 0.31%, 3시간에 0.39%, 12시간에 0.7%, 72시간 후에 4.7%이었다. 전분은 산에 의하여 ${\alpha}-1,4$ 결합과 ${\alpha}-1,6$ 결합이 모두 분해되었는데, 산처리 전분의 요드 반응과 분자량 분포로 보아, 산처리 3시간까지는 ${\alpha}-1,6$ 결합이 분해되었으며, 그 이후부터는 ${\alpha}-1,4$ 결합도 분해되기 시작하였다. 산처리 전분겔 (50%)의 초기 노화도는 산가수분해 정도와 정의 상관 관계를 보였고, 산에 의한 아밀로펙틴의 ${\alpha}-1,6$ 결합의 분해는 노화를 촉진 시켰다.

  • PDF

Karmarkar법의 속도 제고에 관한 연구

  • 우병오;박순달
    • 경영과학
    • /
    • 제8권1호
    • /
    • pp.127-133
    • /
    • 1991
  • 본 연구에서는 Karmarkar법의 변형인 Todd&Burrell 알고리즘을 분석하고 이 알고리즘의 수행속도를 증가시키기 위한 몇가지 방안을 제시하였다. 또한, 몇가지 실험을 통하여 제안된 방안들을 비교 분석하였다. 사영행렬의 계산에 QR 분해법과 Cholesky 분해법을 도입함으로써 계산 시간을 줄일 수 있었고, 구내최적화를 위한 개선폭의 결정에 비율검정법과 선형탐색법을 사용함으로써 수행횟수 및 총 수행시간을 줄일 수 있었다. 수행실험을 통하여 알고리즘을 분석한 결과, 수행시간의 대부분을 사영행렬의 계산이 차지하는 것으로 나타나 이론적으로 계산복잡도를 분석한 결과와 일치하였다. 또한, 사영행렬과 개선폭의 결정에 사용된 각 방법들을 실험을 통해 비교 분석한 바로는 사영행렬의 계산에 있어서 Cholesky 분해법이 Gauss소거법이나 QR 분해법을 쓰는 경우보다 우수했으며, 개선폭을 결정하는 데 있어서는 비율검정법이 속도면에서 가장 우수했다.

  • PDF

피코초 분해능의 시간 상관 단광자 계수 장치 구성 및 동작 특성 (Construction and Performance Characterization of Time-correlated Single Photon Counting System having Picosecond Resolution)

  • 이민영;김동호
    • 한국광학회지
    • /
    • 제5권1호
    • /
    • pp.90-99
    • /
    • 1994
  • 모드록킹된 피코초 레이저, 고속전자장치, 전자관형 광증배관 등을 사용하여, 피코초 분해능을 갖는 시간상관 단광자 계수 장치 및 시분해 스펙트럼 측정 장치를 제작하였다. 기기감음함수는 레이저의 펄스모양, 고속전자장치의 timing jitter 및 walk, 광증배관과 증폭기의 특성에 민감함을 보여주었다. 광학계의 분산등을 보정하여 25 ps의 반치폭을 갖는 기기감응함수를 얻었으며, 이와 같은 결과는 이 장치를 사용할 경우 deconvolution을 통하여 10 ps 이하의 분해능으로 피코초에서 마이크로초의 넓은 범위에 걸쳐서 여기상태 소멸시간의 측정이 가능함을 보여준다.

  • PDF

마이크로파 용해장치를 활용한 토양 중 우라늄의 알파분광분석법 (Efficient Sample Digestion Method for Uranium Determination in Soil using Microwave Digestion for Alpha Spectrometry)

  • 김창종;조윤해;김대지;채정석;윤주용
    • Journal of Radiation Protection and Research
    • /
    • 제37권4호
    • /
    • pp.213-218
    • /
    • 2012
  • 토양 중 우라늄 동위원소의 분석을 위해서 알파분광분석법이 보편적으로 사용되고 있다. 다수의 토양시료를 분석할 경우 시료분해 시간을 단축함으로써 전체 분석시간을 효과적으로 줄일 수 있으며, 이를 위해 본 연구에서는 단시간에 시료를 완전 분해할 수 있는 마이크로파 용해장치를 활용하였다. IAEA-375를 분석 대상 토양으로 하여 용해되지 않은 시료의 양과 분석한 $^{234}U$$^{238}U$의 방사능 농도 값을 통해 시료분해 방법을 최적화 하였으며, 0.5 g의 토양시료에 최소 3 ml의 불산을 가했을 때 80분 내에 효과적으로 분해되는 것을 확인하였다. 이는 2~3일의 분해시간이 필요한 통상적인 방법(open vessel 및 closed vessel을 이용하는 방법)에 비해 시간을 단축 할 수 있어 효율적이며, 불산 사용을 최소화 하여 시료용해 시 발생할 수 있는 유해 물질의 발생 및 접촉을 줄일 수 있다는 장점이 있다.

식물체 플라보노이드 성분 분석을 위한 적정 가수분해 조건 (Determination of Optimum Hydrolysis Conditions for Flavonoid Analysis in Plant Leaves)

  • 박진순;황인욱;정호철;김숙경;정신교
    • 한국식품저장유통학회지
    • /
    • 제17권2호
    • /
    • pp.261-266
    • /
    • 2010
  • 식물체의 플라보노이드 성분 함량 분석에 필요한 적정 가수분해 조건을 구명하기 위하여 은행잎을 이용하여 중심합성법으로 설계한 산 가수분해 시간과 HCl 농도에 따라 myricetin, quercetin, kaempferol 함량을 HPLC로 분석하고, SAS의 반응표면분석법으로 산 가수분해 조건의 최적화를 시도하였다. HCl 0.5~2.5 M, 0.5~2.5시간 범위 내에서 10개의 구간을 잡아서 최적화한 결과 1.5~1.9 M의 HCl 농도와 1.4~2.0시간의 가수분해 조건에서 myricetin, quercetin, kaempferol 성분이 가장 높았다. Superimposing하여 구한 식물체의 플라보노이드의 적정 가수분해 조건은 HCl 1.5 M, 1.5시간이었으며, 이 조건에서 구한 플라보노이드 함량의 예측치와 측정치는 95% 이상 일치하였다. 본 연구에서 구한 적정 가수분해 조건을 이용하여 녹차잎, 무화과잎, 상동나무잎의 플라보노이드 함량을 분석하여 보았다.

질산화 활성슬러지 내에서의 클린다마이신 항생제 생분해 (The investigation of clindamycin biodegradation in nitrifying activated sludge)

  • 조윤철;김이형;김성표
    • 한국습지학회지
    • /
    • 제13권1호
    • /
    • pp.129-137
    • /
    • 2011
  • 본 연구의 목적은 미량오염물질인 클린다마이신(Clindamycin) 항생제의 생분해성을 질산화 슬러지내 에서 평가하는 것이다. 우선 단기간 배치 실험(Batch)을 통한 10ppb의 클린다마이신 생분해 실험결과, 클린다마이신이 반으로 줄어드는 시간 ($t_{0.5}$)은 질산화 슬러지내에서는 9.1시간으로 측정되었으나, 질산화가 저해된 슬러지내에서는 $t_{0.5}$ 시간이 26.1시간으로 증가하였다. 본 실험을 통해, 클린다마이신 분해산물이 질산화 슬러지내에서 발견되었고 이는 clindamycin-sulfoxide (m/z 441)인 것으로 추정되었다. 이 분해산물은 항생 능력이 있는 것으로 판단되었다. 이 클린다마이신 분해산물은 장기간 배치실험을 통해서도 줄어들지 않는 것으로 관찰되었다. 따라서, 활성슬러지를 통한 클린다마이신의 완전 생분해는 쉽지 않은 것으로 판단되었다.

ABS 수지의 저온 열분해에 의한 액화특성 연구 (Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis)

  • 최홍준;정상문;이봉희
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.417-422
    • /
    • 2011
  • ABS 수지의 반응온도 및 반응시간에 따른 저온 열분해를 연구하기 위하여 ABS 수지의 저온열분해를 회분식 반응기를 이용하여 상압하에서 $425{\sim}500^{\circ}C$ 영역에서 수행하였다. 열분해 시간은 20~80분까지 하였고 열분해로 생성된 성분은 지식경제부에서 고시한 증류성상온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. ABS 수지의 열분해에서 80% 이상의 전환율을 얻기 위해서는 반응온도 $500^{\circ}C$ 이상에서 반응시간 60분 이상을 유지하여야 한다. 최종적으로 생성된 분해유는 가스 중유 > 가솔린 > 경유 > 등유 순으로 나타났으며, 온도와 반응시간이 증가함에 따라 중유 및 경유 성분이 늘어났다.