DOI QR코드

DOI QR Code

The investigation of clindamycin biodegradation in nitrifying activated sludge

질산화 활성슬러지 내에서의 클린다마이신 항생제 생분해

  • 조윤철 (고려대학교 환경기술정책연구소) ;
  • 김이형 (공주대학교 건설환경공학부) ;
  • 김성표 (고려대학교 환경시스템 공학과)
  • Received : 2011.03.18
  • Accepted : 2011.04.25
  • Published : 2011.04.30

Abstract

The aim of this study is to evaluate the biodegradability of the micro-contaminant, clindamycin antibiotic, under nitrifying activated sludge (AS) condition. Based on the short-term clindamycin degradation batch test at an environmentally relevant concentration (10 ppb), clindamycin disappearance half-life ($t_{0.5}$) was estimated to be 9.1hrs under nitrification condition. However, biodegradation was slower (26.1 hrs) when nitrification was inhibited. Also, one clindamycin metabolite was detected under nitrification condition, but not under inhibited nitrification condition. Based on the mass spectra, the metabolite is suspected to be clindamycin-sulfoxide (m/z 441), which is known to have antimicrobial activity. The metabolite was not degraded during the long term batch study, suggesting that under the conditions tested, biodegradation of clindamycin in activated sludge systems is ineffective.

본 연구의 목적은 미량오염물질인 클린다마이신(Clindamycin) 항생제의 생분해성을 질산화 슬러지내 에서 평가하는 것이다. 우선 단기간 배치 실험(Batch)을 통한 10ppb의 클린다마이신 생분해 실험결과, 클린다마이신이 반으로 줄어드는 시간 ($t_{0.5}$)은 질산화 슬러지내에서는 9.1시간으로 측정되었으나, 질산화가 저해된 슬러지내에서는 $t_{0.5}$ 시간이 26.1시간으로 증가하였다. 본 실험을 통해, 클린다마이신 분해산물이 질산화 슬러지내에서 발견되었고 이는 clindamycin-sulfoxide (m/z 441)인 것으로 추정되었다. 이 분해산물은 항생 능력이 있는 것으로 판단되었다. 이 클린다마이신 분해산물은 장기간 배치실험을 통해서도 줄어들지 않는 것으로 관찰되었다. 따라서, 활성슬러지를 통한 클린다마이신의 완전 생분해는 쉽지 않은 것으로 판단되었다.

Keywords

References

  1. Alexy, R., Sommer, A., Lange, F.T., Kuemmerer, K., 2006. Local use of antibiotics and their input and fate in a small sewage treatment plant-significance of balancing and analysis on a local scale vs nationwide scale. Acta Hydrochim. Hydrobiol. 34, 587-592. https://doi.org/10.1002/aheh.200400657
  2. Batt, A.L., Aga, D.S., 2005. Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal. Chem. 77, 2940-2947. https://doi.org/10.1021/ac048512+
  3. Batt, A.L., Bruce, I.B., Aga, D.S., 2006. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut, Amsterdam. 142, 295-302. https://doi.org/10.1016/j.envpol.2005.10.010
  4. Batt, A.L., Kim, S., Aga, D.S., 2006. Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environ. Sci. Technol. 40, 7367-7373. https://doi.org/10.1021/es060835v
  5. Batt, A.L., Kostich Mitch, S., Lazorchak James, M., 2008. Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal. Chem. 80, 5021-5030. https://doi.org/10.1021/ac800066n
  6. Bisceglia, K.J., Roberts, A.L., 2005. A usage study and preliminary environmental risk assessment on human pharmaceuticals in the united states. Poster presentation, 2005 AEESP research and education conference, Clarkson University, New York. 23-25.
  7. de Mes, T., Zeeman, G.,Lettinga, G., 2005. Occurrence and fate of estrone, 17-estradiol and 17 -ethynylestradiol in STPs for domestic wastewater. Reviews in Environ. Sci. Biotechnol. 4, 275-311. https://doi.org/10.1007/s11157-005-3216-x
  8. Eichhorn, P., Ferguson, P.L., Perez, S., Aga, D.S., 2005. Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Anal. Chem. 77, 4176-4184. https://doi.org/10.1021/ac050141p
  9. Gatiser, S., Urich, E., Alexy, R., Kummerer, K., 2007, Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere. 67, 604-613. https://doi.org/10.1016/j.chemosphere.2006.08.038
  10. Hirsch, R., Ternes, T., Haberer, K., Kratz, K.L., 1999. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 225, 109-118. https://doi.org/10.1016/S0048-9697(98)00337-4
  11. Jarnheimer, P.A., Ottoson, J., Lindberg, R., Stenstrom, T.A., Johansson, M., Tysklind, M., Winner, M.M., Olsen, B., 2004. Fluoroquinolone antibiotics in a hospital sewage line: ccurrence distribution and impact on bacterial resistance. Scandinavian Journal of Infectious Diseases. 36, 752-755. https://doi.org/10.1080/00365540410021027a
  12. Keener, W.K., Arp, D.J., 1994. Transformations of aromatic-compounds by nitrosomonas-europaea Appl. Environ. Microbial. 60, 1914-1920.
  13. Kim, S., Eichhorn, P., Jensen, J.N., Weber, A.S., Aga, D.S., 2005. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ. Sci. Technol. 39, 5816-5823. https://doi.org/10.1021/es050006u
  14. Martens-Lobenhoffer, J., Banditt, P., 2001. Sensitive and specific determination of clindamycin in human serum and bone tissue applying liquid chromatographyatmospheric pressure chemical ionization-mass spectrometry. J. Chromatography B. 755, 143-149. https://doi.org/10.1016/S0378-4347(01)00060-3
  15. Papaiacovou, M., 2001. Case studywastewater reuse in limassol as an alternative water source. Desalination. 138, 55-59. https://doi.org/10.1016/S0011-9164(01)00244-2
  16. Perez, S., Eichhorn, P., Aga, D.S., 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ. Toxicol. Chem. 24, 1361-1367. https://doi.org/10.1897/04-211R.1
  17. Rasche, M.E., Hyman, M.R., Arp, D.J., 1991. Factors limiting aliphatic chlorocarbon degradation by nitrosomonas-europaea -cometabolic inactivation of ammonia monooxygenase and substrate-specificity. Appl. Environ. Microbiol. 57, 2986-2994.
  18. Reif, R., Suarez, S., Omil, F., 2008. Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination. 221, 511-517. https://doi.org/10.1016/j.desal.2007.01.111
  19. Rxlist http://www.rxlist.com/script/main/art.asp?articlekey=79509 (accessed 10 June 2009)
  20. Saeijs, H.L., Van Berkel, M.J., 1995. Global water crisis: the major issue of the 21st century, a growing and explosive problem. Eur. Water. Pollut. Control. 5, 26-40.
  21. Sedlak, D.L., Gray, J.L., Pinkston, K.E., 2000. Understanding micro contaminants in recycled water. Environ. Sci. Technol. 34, 509A-515A. https://doi.org/10.1021/es990024+
  22. Ternes, T.A., Janex-Habibi, M.L., Knacker, T., Kreuzinger, N., 2004. Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse. Report EUPOSEIDON project, EVK1-CT-2000-00047, Germany.
  23. World Health Organization and UNICEF., 2005. Water for Life: Making it happen, WHO Press Report, Geneva.
  24. Wu, C., Spongberg, A. L., Witter, J. D., 2009. Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci. Health Part A, 44, 454-461. https://doi.org/10.1080/10934520902719779
  25. Wynalda, M.A., Hutzler, J.M., Koets, M.D., Podoll, T., Wienkers, L.C., 2003. In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metabolism. Disposition. 31, 878-887. https://doi.org/10.1124/dmd.31.7.878