본 논문은 모바일 방송 통신 시스템에서 나타나는 사용자들의 불편사항을 해소하기 위한 서비스 품질 개선 모델을 제안하였다. 사용자들의 불편사항인 일시적인 통신장애와 채널 변경 지연시간을 해결하기 위해 ATSC M/H 표준의 NRT서비스를 이용, 해당 영상보다 수 분 빠른 영상을 전송 받는 모델을 제시하였다. 또한, GPS 모듈을 통해 사용자의 현재 위치를 구한 뒤 이를 이용, 통과 예상되는 지역중 통신 장애 발생 가능 구간을 확인하여 해당 영상을 미리 전송 받을 수 있는 모델을 제시하였고 Key 프레임과 음성데이터 만의 조합으로 영상의 용량을 줄여 이를 이용하는 모델을 제시하였다. 마지막으로 사용자의 채널 선택 패턴을 조사한 정보를 바탕으로 채널 변경이 예상되는 시간 전에 미리 컨텐츠를 받는 모델도 제시하였다. 제안한 모델의 우수성을 알아보기 위해 PSNR(Peak Signal-to-Noise Ratio) 값을 사용자가 느끼는 만족감의 척도로 활용하고 제안모델은 통신장애 시 에러율 80% 에 비해 4.8배 높은 평균값을 결과로 얻었다.
APEX(Agricultural Policy Enviromental eXtender) 모형은 일 단위로 구동되며 필지단위 및 소유역 단위에서의 흐름을 장기 모의를 할 수 있는 모형이다. APEX는 유출을 포함한 토양 침식, 탄소 이동 등 다양한 자연현상을 모의할 수 있는 모형이다. 강우에 의한 직접유출량을 APEX를 이용하여 산정할 수 있지만, 모델링 과정에서 발생하는 불확실성으로 인하여 부정적인 요인이 발생한다. 따라서 본 연구에서는 APEX 모형의 유출 매개변수를 이용한 불확실성을 평가하고자 한다. 이를 위해서 금강권역에서 표준유역으로 분류되어있는 한천 유역에 대해 2008~2019년도 유출량을 모의하였으며, 검증을 위해 동일기간에 대해 기저유출분리를 수행하였다. 불확실성 평가를 위해서 Python 기반으로 사전분포로부터 매개변수를 임의로 선택하도록 설정하여 총 10,000번의 구동을 수행하였다. 불확실성 평가지표로는 NSE, PBIAS, RSR을 이용하여 평가하여 평가지표별 불확실성 구간을 비교분석 하였다. 본 연구에서의 APEX 모형의 불확실성 평가를 통하여 APEX의 활용성을 더욱 확대하고 신뢰성을 높일 것으로 기대한다.
본 논문에서는 저밀도 패리티 체크 (LDPC) 부호 기반인 직교 주파수 분할 다중 접속 시스템의 상향 전송에서의 반복 수신기법에 대하여 제안한다. 파일럿 심볼에 대한 위너 (Wiener) 필터링 기법을 적용하여 보다 효율적인 초기 채널 추정 성능을 이끌어 내며 위너 필터링 기법에 대한 복잡도를 감소하기 위해 채널의 변화 정도를 채널 상관 관계 값을 기준으로 몇 개의 구간으로 구분하여 미리 정한 위너 필터 계수 중에서 알맞은 위너 필터 계수를 정한다. 이를 바탕으로 저밀로 패리티 체크 부호의 복호 후의 결과를 활용하여 채널을 재추정하며 이 때의 채널 추정 오류에 대한 분산을 계산하여 데이터 심볼과 파일럿 심볼의 최대화율 결합을 이끌어낸다. 결합된 채널 추정 값을 통해 채널의 상관 관계를 다시 추정하며 그 결과에 따라 적절한 필터 계수를 선택한다. 모의 실험을 통하여 제안된 반복 수신기의 성능이 파일럿만을 활용하는 수신기에 비하여 우수한 성능을 나타내는 것을 확인한다.
초광대역 장거리 전송 링크를 구현하기 위해서는 색 분산과 비선형 Kerr 현상에 의한 광 신호 왜곡을 보상해야 한다. 본 논문에서는 왜곡된 파장 분할 다중 채널을 보상하기 위한 분산 제어와 광 위상 공액을 결합한 링크를 제안하였다. 제안하는 분산 제어 링크에서의 분산 맵 프로파일은 일정한 주기로 반복하는 형태이고, 이러한 분산 제어 링크에서 광 위상 공액기는 전체 전송로 중간뿐만 아니라 여러 다양한 곳에 위치시켰다. 시뮬레이션 결과 제안하는 분산 제어 링크에서 중계 구간의 잉여 분산 (RDPS; residual dispersion per span)을 비교적 큰 값으로 선택하면 광 위상 공액기가 전체 전송로 중간이 아닌 non-midway OPC 시스템에서 왜곡된 파장 분할 다중 채널의 보상을 전통적인 구조의 분산 제어 링크에서 보다 개선시킬 수 있는 것을 확인하였다.
목적 : 본 연구는 자폐스펙트럼장애(Autism Spectrum Disorder; ASD) 아동을 대상으로 전산화 인지재활이 주의력에 미치는 효과를 알아보고자 하였다. 연구방법 : 개별대상자 실험연구 방법 중 다중 기초선 설계를 사용하였다. 총 15회기를 주 3회씩 1회기 당 30분 동안 진행하였다. 전산화 인지재활 프로그램의 주의력 영역에서 유지 주의력과 선택적 주의력 검사를 매 회기가 끝난 직후에 평가하였다. 선택적 주의력을 평가하기 위하여 사전과 사후에 별 지우기 검사(star cancellation test)를 실시하였다. 결과 : 전산화 인지재활 중재 후 유지 주의력과 선택적 주의력의 검사에서 정확도는 대상자 모두 향상되었다. 2표준편차 구간을 이용한 분석방법에서 대상자 1, 2가 유의한 증진이 나타났고 대상자 3은 유의하지 않았지만 평균값이 향상되었다. 결론 : 본 연구 결과를 통해 전산화 인지재활 프로그램을 사용한 인지재활은 ASD 아동의 주의력에 긍정적인 영향을 미치는 것을 확인할 수 있었다.
경인고속도로가 개통된 1969년 이후로 우리나라 고속도로는 국토의 대동맥으로서 꾸준한 확장과 신설을 거듭해 왔으며, 조만간 고속도로 3.000km시대를 맞이하게 될 전망이다. 이에 고속도로는 건설과 확장 위주에서 효율적 운영이 중요성이 과거 그 어느 때보다도 강조되고 있다. 최근 고속도로망이 복잡해져감에 따라 교통정보의 가치가 점점 높아지고 있고, 더욱이 정보통신기술의 급격한 발달과 함께, 휴대폰, PDA, PNS 등의 보급이 증가함에 따라 교통정보의 수요가 급증하고 있다. 특히, 통행시간 정보의 경우, 혼잡이 있는 도로망에서 최적의 경로선택을 하고. 경로간에 적절한 교통량분산을 통해 자원의 효율적 배분을 달성하는데 있어 필수적인 정보로서 그 중요성을 더해 가고 있는 실정이다. 본 연구에서는 고속도로 통행료수납시스템(TCS)에서 수집되는 톨게이트간 통행시간 데이터를 기반으로 TCS 통행시간 데이터의 속성과 시계열적 패턴을 규명하고, 이를 바탕으로 모듈라 신경망모형(Modular Neural Network Model)을 이용한 통행시간 예측모형을 개발하였다. 우선, 단거리(서울->수원)와 장거리(서울->대전) 그리고 평일과 주말로 구분하여 TCS 데이터에 대한 시계열 패턴 분석을 한 결과, 단거리와 장거리 공히 충분한 범위의 예측가능한 시간적 범위를 가지고 있으며, 복잡한 정도는 장거리가 높은 것으로 나타났다. 다만. 단거리구간이 장거리 구간에 비해 초기조건에 대한 민감성이 큰 이유로 상대적으로 장기예측이 어려운 것으로 분석되었다. 한편, 모형 적용 현장의 요구기능을 분석하여 모듈라 신경망 구조를 가진 예측모형을 개발하였으며, 최소한 약 80분 이상의 장기예측이 요구되는 서울->대전구간에 적용한 결과, 대부분 10분 이내의 낮은 오차를 보였다. 본 연구에서 개발된 모형은 예측범위가 고정적인 대부분의 시계열모형과는 달리 최소의 입력(3개)을 가지면서 하나의 신경망으로 학습한 최대/최소의 예측시간 범위내에서 그 크기에 상관없이 거의 동일한 수준의 예측력을 보이는 장점을 가지고 있다.
본 논문은 대용량 동영상을 관리하기 위한 빠르고 효율적인 내용기반 중복 동영상 검출 알고리즘을 제안한다. 효율적인 중복 동영상 검출을 위해 대용량의 동영상을 처리하기 쉬운 작은 단위로 나누는 동영상 장면 전환 기반 분할 기술을 적용하였다. 동영상 서비스 및 저작권 보호 관련 사업모델의 경우, 필요한 기술은 아주 작은 구간의 동영상이나 한 장의 영상 을 검색하기보다는 상당한 길이 이상 일치하는 동영상을 파악하는 기술이 필요하다. 이러한 중복 동영상 검출을 위해 본 논문에서 동영상을 장면 전환을 기준으로 분할하여, 나누어진 장면 내에서 움직임 분포 서술자와 대표 프레임을 선택하여 프레임 서술자를 추출한다. 움직임 분포 서술자는 동영상 디코딩 과정에서 얻어지는 매크로 블록의 움직임 벡터를 이용한 장면 내 움직임 분포 히스토그램을 구성하였다. 움직임 분포 서술자는 정합시 고속 정합이 가능하도록 필터링 역할을 한다. 반면 움직임 정보만는 낮은 변별력을 가진다. 이를 높이기 위해 움직임 분포 서술자를 이용하여 정합된 장면간에 선택된 대표 프레임의 패턴 서술자를 이용하여 동영상의 중복 여부를 최종 판단한다. 제안된 방법은 실제 동영상 서비스 환경에서 우수한 인식률과 낮은 오인식률을 가질 뿐만아니라 실제 적용이 가능할 정도의 빠른 정합 속도를 얻을 수 있었다.
본 논문은 대용량 동영상을 관리하기 위한 빠르고 효율적인 내용기반 중복 동영상 검출 알고리즘을 제안한다. 효율적인 중복 동영상 검출을 위해 대용량의 동영상을 처리하기 쉬운 작은 단위로 나누는 동영상 장면 전환 기반 분할 기술을 적용하였다. 동영상 서비스 및 저작권 보호 관련 사업모델의 경우, 필요한 기술은 아주 작은 구간의 동영상이나 한 장의 영상 을 검색하기보다는 상당한 길이 이상 일치하는 동영상을 파악하는 기술이 필요하다. 이러한 중복 동영상 검출을 위해 본 논문에서 동영상을 장면 전환을 기준으로 분할하여, 나누어진 장면 내에서 움직임 분포 서술자와 대표 프레임을 선택하여 프레임 서술자를 추출한다. 움직임 분포 서술자는 동영상 디코딩 과정에서 얻어지는 매크로 블록의 움직임 벡터를 이용한 장면 내 움직임 분포 히스토그램을 구성하였다. 움직임 분포 서술자는 정합시 고속 정합이 가능하도록 필터링 역할을 한다. 반면 움직임 정보만는 낮은 변별력을 가진다. 이를 높이기 위해 움직임 분포 서술자를 이용하여 정합된 장면 간에 선택된 대표 프레임의 패턴 서술자를 이용하여 동영상의 중복 여부를 최종 판단한다. 제안된 방법은 실제 동영상 서비스 환경에서 우수한 인식률과 낮은 오인식률을 가질 뿐만아니라 실제 적용이 가능할 정도의 빠른 정합 속도를 얻을 수 있었다.
본 논문은 화자 독립의 음성인식을 위한 연구로서, DMS(Dynamic Multi-Section) 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 퍼지 개념을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 제안된 인식 방법에서는 학습 데이터를 동적으로 몇 개의 구간(section)으로 분할한 후, 각 구간마다 DMSVQ 코드북(codebook)으로 부터 거리값이 작은 순으로 퍼지 법칙을 적용함으로써 적당한 확률값을 준 다중 관측열(multi-observation sequences)을 구한다. 그런 다음, 이 다중 관측열을 이용하여 HMM을 작성하고, 인식시에는 관측 확률값이 가장 높은 것을 인식된 것으로 선택한다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 실험들과 비교를 위해 동일한 조건하에서 같은 데이터로 수행 하였다. 실험 결과로서, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.
4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.