• Title/Summary/Keyword: 분자 계통분석

Search Result 326, Processing Time 0.03 seconds

Development of PCR-based markers for selecting plastid genotypes of Solanum hjertingii (Solanum hjertingii 색소체 유전자형 선발을 위한 PCR 기반 분자마커 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.34-44
    • /
    • 2023
  • The tetraploid Solanum hjertingii, a wild tuber-bearing species from Mexico is a relative of potato, S. tuberosum. The species has been identified as a potential source of resistance to blackening for potato breeding. It does not exhibit enzymatic browning nor blackspot which are physiological disorders. However, due to their sexual incompatibility, somatic hybridization between S. hjertingii and S. tuberosum must be used to introduce various traits from this wild species into potato. After somatic hybridization, molecular markers are essential for selecting fusion products. In this study, the chloroplast genome of S. hjertingii was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop specific markers for S. hjertingii. The chloroplast genome has a total sequence length of 155,545 bp, and its size, gene content, order and orientation are similar to those of the other Solanum species. Phylogenic analysis including 15 other Solanaceae species grouped S. hjertingii with S. demissum, S. hougasii, and S. stoloniferum. After detailed comparisons of the chloroplast genome sequence with eight other Solanum species, we identified one InDel and seven SNPs specific to S. hjertingii. Based on these, five PCR-based markers were developed for discriminating S. hjertingii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary aspects of Solanum species and accelerating breeding using S. hjertingii.

Effect of Length of Alkyl Group on Thermal-Liquid Crystalline Properties of Cholesteryl 4-n-Alkoxybenzoate (알킬기의 길이가 콜레스테릴 4-n-알콕시벤조에이트의 열적-액정 특성에 미치는 영향)

  • Yoon, Doo-Soo;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.69-74
    • /
    • 2017
  • In this study, cholesteryl 4-n-alkoxybenzoates (Chol-n), with alkyl groups used for controlling the temperature of transition to the liquid crystal phase, were synthesized, and the effects of the length of the alkyl groups on the physical properties of the liquid crystal compounds were investigated. The chemical structures and thermal and liquid crystalline properties of the synthesized compounds were investigated by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ($^1H$-NMR), differential scanning calorimetry (DSC), and polarizing optical microscopy (POM). The synthesized compounds showed melting transition temperatures ($T_m$) in the range of $103^{\circ}C$ to $143^{\circ}C$ and all of the compounds except Chol-6 exhibited a wide liquid crystal phase temperature range of about $60^{\circ}C$ to $100^{\circ}C$. No correlation between the number of carbon atoms in the molecule and the thermal properties of the compounds was found. All of the synthesized compounds showed an enantiotropic cholesteric phase, which was accompanied by a chiral smectic phase in the compounds Chol-6, Chol-8, Chol-9, and Chol-10. All of the compounds exhibited thermochromism in the liquid crystal state, and their color changed from red to blue as the temperature was increased.

Discrimination of Potato Varieties by Random Amplified Polymorphic DNA Analysis (RAPD에 의한 감자 품종의 구분)

  • Seo, Hyo Won;Yi, Jung Yoon;Cho, Hyun Mook;Park, Young Eun;Oh, Seung Eun
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.29-33
    • /
    • 2001
  • This study was carried out to discriminate potato cultivars and breeding lines by specific molecular markers using random amplified polymorphic DNA (RAPD) analysis. The genotypes of potatoes used for analysis were eight cultivars and five breeding lines. Some of those show much phenotypic resemblances among them because 'Jopung', 'Daekwan70', 'Gawon', and 'Daekwan72' have immediate parental relationship with 'Superior', 'Irish Cobbler', 'Namsuh', and 'Atlantic', respectively. So, there are many difficulties to distinguish the varieties by the morphological characteristics. Three URP primers, URP2, URP4, and URP8 were selected for promising primers to discriminate potato genotypes or cultivars. The three URP primers were shown very high reproducibility because of the relatively high annealing temperature and long primer size. Although the results of similarity analyses did not always reflect the genetic relationship between potato varieties, the reproducible pattern of amplified DNA bands by URP primers showed possibility for molecular markers for discrimination of potato genotype or cultivar.

  • PDF

Physiological and molecular characterization of two inbred radish lines with different bolting times (추대시기가 서로 다른 무 계통간 생리학적, 분자생물학적 개화 특성 규명)

  • Park, Hyun Ji;Jung, Won Yong;Lee, Sang Sook;Lee, Joo won;Kim, Youn-Sung;Cho, Hye Sun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.215-222
    • /
    • 2015
  • The radish (Raphanus sativus L.) is an important Brassicaceae root vegetable crop worldwide. Several studies have been conducted concerning radish breeding. There are major challenges to prevent premature bolting in spring plantings. Here, we performed the characterization of two inbred radish lines which vary in bolting time. "Late bolting radish" (NH-JS1) and "early bolting radish" (NH-JS2) were generated by a conventional breeding approach. The two inbred lines showed different bolting phenotypes depending on vernalization time at $4^{\circ}C$. NH-JS1, the late bolting radish, was less sensitive to cold treatment and the less sensitivity was inversely proportional to the duration of the vernalization. We also measured gene expression levels of the major bolting time related genes in the NH-JS1 and NH-JS2 lines. RsFLC1 plays a central role in the timing of flowering initiation. It is a strong repressor and it's transcript is highly expressed in NH-JS1 compared to NH-JS2 under no treatment and vernalization conditions. RsFRI, a positive regulator of RsFLC, is also highly expressed in NH-JS1 compared to NH-JS2 regardless of vernalization. In contrast, RsSOC1, suppressed by FLC as a floral integrator gene, showed the most difference, a 5-fold increase, between NH-JS1 and NH-JS2 under vernalization conditions. From these results, we conclude that NH-JS1 showed a late flowering phenotype after cold treatment due to the expression differences of flowering time regulator genes rather than difference sensitivity to cold. These results may be useful to understand the control mechanisms of flowering time and may help identify molecular markers for selecting late bolting trait in radish.

Isolation and Identification of Bacteria Lysing Anabaena cylindrica (Anabaena cylindrica 분해세균의 분리 및 동정)

  • Choi, Yong-Keel;Hong, Yup;Shin, Kyu-Chul;Kim, Min-Seong;Han, Myung-Soo
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • To isolate the bacteria lysing cyanobacteria, the sediment samples were collected from Dochang and Pal'tang Reservoir and Seokchon Lake. Each sample was smeared on the Anabaena cylindrica lawn and incubated in light chamber for 11 days. Bacteria having cyanobacteria-Iysing activity were isolated from the samples of Seokchon reservoir. Confirmation of cyanobacteria-Iysing activity was carried out to measure chlorophyll a and bacterial cell counting in mixed culture of Anabaena cylindrica and bacteria. Lysis was detected when extracellular meterials was added to the Anabaena cylindrica culture. The isolate was identified by analysis based on 16S rDNA sequence and morphological and physiological properties. The bacterial strain was taxonomically studied by the phylogenetic analysis based on 165 rDNA sequence. This strain was identified as a member of the genus Bacillus and designated as Bacillus sp. CHS1.

Rapid bacterial identification using Raman spectroscopy (라만 분광법을 활용한 세균 검측 기술)

  • No, Jee Hyun;Lee, Tae Kwon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.

Identification of Pseudocercospora bolleana Associated with Angular Leaf Spot on Common Fig in Korea (무화과나무의 모무늬잎마름 증상에 관여하는 Pseudocercospora bolleana 동정)

  • Choi, In-Young;Choi, Young-Joon;Lee, Chong-Kyu;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.539-545
    • /
    • 2021
  • A cercosporoid fungus associated with angular leaf spots on the leaves of common fig (Ficus carica) in Korea is known to be morphologically similar to Passalora, but phylogenetically similar to Pseudocercospora. To clarify the ambiguity, six fig samples with angular leaf spots were collected and examined using a microscope, and two representative isolates were sequenced for multiple genes. The morphological characteristics were consistent with previous descriptions of Passalora bolleana. Molecular phylogenetic analysis based on the internal transcribed spacer and large subunit ribosomal DNA (rDNA) regions showed that the Korean isolates, as well as previously published Korean and Romanian isolates, formed a well-supported group in the clade of Pseudocercospora species. Consequently, the current Korean isolates should be correctly described as Pseudocercospora bolleana. Additionally, Pseudocercospora fici-caricae, a cercosporoid fungus previously described as a leaf pathogen on common fig in Taiwan and Korea, was also compared and discussed.

Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics (토판염전 결정지 내 세균군집의 계통학적 다양성 및 Culturomics법을 이용한 고도 호염균의 분리)

  • Cho, Geon-Yeong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • In this study, we investigated the phylogenetic diversity of the bacterial community and isolation of extremely halophilic bacteria using culturomics in a gray solar saltern. The number of bacterial living cells, enumerated in a gray solar saltern by direct fluorescence microscopy was three to four orders of magnitude greater than those enumerated by plate counts, suggesting the distribution of 'viable but non-culturable bacteria'. The biodiversity of bacterial communities in a gray solar saltern was investigated by pyrosequencing, 1,778 OTUs of bacteria were comprised of 18 phyla 46 classes 85 orders 140 families 243 genera with 6.16 diversity index. Archaea communities were composed of 3 phyla 6 classes 7 orders 7 families 38 genera with 4.95 diversity index from 643 OTUs. Totally 137 isolates were isolated by 59 different cultural methods based on culturomics considering culture media and conditions suitable for the growth of extremely halophilic bacteria. Phylogenetic analyses of extremely halophilic isolates based on 16S rRNA gene sequences, extremely halophilic isolates were composed of 4 phyla and 11 genera. Haloterrigena and Haloferax can be successfully isolated from culturomics. These culturomics were effective methods for collection of diversity of extremely halophilic bacteria.

First Report of Summer Patch Caused by Magnaporthiopsis poae on Cool Season Grass (Magnaporthiopsis poae에 의한 한지형 잔디의 여름잎마름병 보고)

  • Han, Ju Ho;Ahn, Chang Hyun;Lee, Seung-Yeol;Back, Chang-Gi;Kang, In-Kyu;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.196-200
    • /
    • 2016
  • Symptoms of summer patch were observed on Kentucky bluegrass (Poa pratensis L.) cv. "Midnight II" from mid-June in 2015 in Seoul, Korea. The symptoms appeared as leaf blight, root rot, and frog-eye patch, which are typical of summer patch. To identify the causal agent of these symptoms, a pathogen was isolated from diseased leaves and roots, and the cultural, morphological, and phylogenetic characteristics were analyzed. The isolate reached 50-60 mm on potato dextrose agar (PDA) after 10 days as a white-grey mycelium with septa, and became olive-green or brown from the center. Phialide-like structures were observed at the ends of hyphae, and conidia were rarely observed. A phylogenetic analysis was conducted based on large subunit (LSU) and RNA polymerase II large subunit (RPB1) sequences. According to this analysis, the isolated pathogen was confirmed to be Magnaporthiopsis poae. In a pathogenicity test, summer patch symptoms were observed at 20 days after inoculation using the same grass cultivar. This is the first report of summer patch disease caused by M. poae on cool season grass in Korea.

Development of specific SNP molecular marker from Thistle using DNA sequences of ITS region (엉겅퀴의 ITS 영역 염기서열 분석을 통한 특이적 SNP 분자마커의 개발)

  • Lee, Shin-Woo;Lee, Soo Jin;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.102-109
    • /
    • 2018
  • Thistle is a perennial plant that is widely used for medicinal purposes. Information on the genetic diversity of thistle populations are great important for their conservation and germ plasmic utilization. Although thistle is an important medicinal plant species registered in South Korea, no molecular markers are currently available to distinguish them from other similar species from different countries. In this study, we developed single nucleotide polymorphism (SNP) markers derived from the nuclear ribosomal DNA internal transcribed spacer (ITS) regions of genomic sequences to identify distinct Korean-specific thistle species via an amplification refractory mutation system (ARMS)-PCR and high resolution melting (HRM) curve analyses. We performed molecular authentication of four different kinds of thistle species from different regions using DNA sequences in the ITS intergenic region. We also developed a quantitative PCR assay using species-specific ITS primers, which allowed us to estimate the ratio of Korean-specific thistle species using varying ratios of mixed genomic DNA templates from the two species. The SNP markers developed in this study are useful for rapidly identifying specific thistle species from different countries.