• Title/Summary/Keyword: 분자지표

Search Result 190, Processing Time 0.03 seconds

Application of Molecular Biological Technique for Development of Stability Indicator in Uncontrolled Landfill (불량매립지 안정화 지표 개발을 위한 분자생물학적 기술의 적용)

  • Park, Hyun-A;Han, Ji-Sun;Kim, Chang-Gyun;Lee, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-136
    • /
    • 2006
  • This study was conducted for developing the stability parameter in uncontrolled landfill by using a biomolecular investigation on the microbial community growing through leachate plume. Landfill J(which is in Cheonan) and landfill T(which is in Wonju) were chosen for this study among a total of 244 closed uncontrolled landfills. It addressed the genetic diversity of the microbial community in the leachate by 165 rDNA gene cloning using PCR and compared quantitative analysis of denitrifiers and methanotrophs with the conventional water quality parameters. From the BLAST search, genes of 47.6% in landfill J, and 32.5% in landfill T, respectively, showed more than 97% of the similarity where Proteobacteria phylum was most significantly observed. It showed that the numbers of denitrification genes, i.e. nirS gene and cnorB gene in the J site are 7 and 4 times higher than those in T site, which is well reflecting from a difference of site closure showing 7 and 13 years after being closed, respectively. In addition, the quantitative analysis on methane formation gene showed that J1 spot immediately bordering with the sources has the greatest number of methane formation bacteria, and it was decreased rapidly according to distribute toward the outer boundary of landfill. The comparative investigation between the number of genes, i.e. nirS gene, cnorB gene and MCR gene, md the conventional monitoring parameters, i.e. TOC, $NH_3-N,\;NO_3-N,\;NO_2-N,\;Cl^-$, alkalinity, addressed that more than 99% of the correlation was observed except for the $NO_3-N$. It was concluded that biomolecular investigation was well consistent with the conventional monitoring parameters to interpret their influences and stability made by leachate plume formed in downgradient around the uncontrolled sites.

Browning and Moisture Sorption Characteristics of Rubus coreanus Prepared by Different Drying Methods (건조방법에 따른 복분자 분말의 갈변 및 흡습 특성)

  • Chung, Hun-Sik;Seong, Jong-Hwan;Lee, Young-Guen;Kim, Han-Soo;Lee, Joo-Baek;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.797-803
    • /
    • 2009
  • The effects of drying methods on the browning and moisture sorption characteristics of Rubus coreanus were studied. Fruits were steamed for 5 min at $100^{\circ}C$, dried by sun drying, infrared drying, or freeze drying, and powdered to a size of 20 mesh. Color values were measured and equilibrium moisture contents (EMC) were determined at $20^{\circ}C$, over a range of water activity ($a_w$) from 0.11 to 0.90. The browning indices $L^*$ and $a^*$ values were higher and lower, respectively, in freeze-dried Rubus coreanus compared with other samples. The $b^*$ value was greatest in freeze-dried Rubus coreanus. EMC tended to increase with increasing $a_w$ values, and a particularly sharp increment was observed above 0.75 $a_w$. The EMC of freeze-dried Rubus coreanus was significantly higher compared with the EMC of sun-dried and infrared-dried fruit at constant aw. The moisture sorption isotherms showed a typical sigmoid shape, and the Halsey, Kuhn, and Oswin models were the best fits for the sun-dried, infrared-dried, and freeze-dried powder isotherms, respectively. With respect to monolayer moisture content, the Guggenheim-Anderson-Boer (GAB) equation showed that the various drying methods yielded very different results, with monolayer moisture contents of 0.005 g $H_2O/g$ dry solid in infrared-dried and 0.019 g $H_2O/g$ dry solid in sun- and freeze-dried powders, respectively. These results indicate that the drying method affects the browning and moisture sorption characteristics of Rubus coreanus.

Phylogeographic and population genetic study of a Korean endemic freshwater fish species, Zacco koreanus (한국 고유 담수어종 참갈겨니(Zacco koreanus) 개체군의 계통지리학 및 집단유전학 연구)

  • Kim, Yu Rim;Jang, Ji Eun;Choi, Hee-kyu;Lee, Hyuk Je
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • We conducted a phylogeographic analysis of Korean endemic Zacco koreanus populations inhabiting the East-flowing river (Gangneung Yeongokcheon; GY, Yangyang Namdaecheon; YN), the Han River (Seomgang; SG, Soksacheon; SS), and the Nakdong River(Gilancheon; GA) using the mitochondrial DNA cytochrome oxidase I (COI) gene (619 bp). Population genetic analysis was further performed to assess the population connectivity for the GY river where there is a large number of human-made artificial weirs with several fishways. The phylogeographic analysis revealed that while the populations of the East-flowing river and those of the Han River formed a monophyletic lineage, the Nakdong River individuals represented a distinct lineage with 3.7-4.2% (mean=4.0%) genetic distance from the other lineages. The population genetic analysis of the GY showed that a mid-stream population harbored relatively higher mitochondrial diversity relative to up- and down-stream populations, and there was no genetic differentiation between these three populations. The latter findings might suggest high genetic connectivity between the populations via genetic flow along the fishways. However, an analysis using faster-evolving genetic markers, such as microsatellites, is needed to confirm the findings of high population connectivity. Our study suggests the possibility of the presence of cryptic species in Z. koreanus in the Nakdong River basin. However, further study with more individual samples as well as additional markers or even more advanced genomic tools is required to test our hypothesis. Ecological or phenotypic analyses should be conducted to test whether the observed Nakdong River lineage represents a different or cryptic species, or simply hidden, but excessive, intraspecific diversity.

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

Ttrosine Hydroxylase in Japanese Medaka (Oryzias latipes): cDNA Cloning and Molecular Monitoring of TH Gene Expression As a Biomarker (송사리 Tyrosine Hydroxylase: cDNA 클로닝 및 생물지표로서의 TH 유전자 발현의 분자생물학적 추적)

  • Shin, Sung-Woo;Kim, Jung-Sang;Chon, Tae-Soo;Lee, Sung-Kyu;Koh, Sung-Cheol
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2000
  • The release of hazardous waste materials into the environment poses serious risks in humans and ecosystems. The risk assessment of environmental pollutants including hazardous chemicals requires a comprehensive measurement of hazard and exposure of the chemicals that can be achieved by toxicity evaluation using a biological system such as biomarkers. In this report we have tried to develop a biomarker used to elucidate a molecular basis of, and to monitor abnormal behaviors caused by diazinon in Japanese medaka (Oryzias latipes) as a model organism. First, an attempt was made to clone tyrosine hydroxylase gene from Japanese medaka that would be a candidate for a biomarker for neuronal modulations and behaviors. For monitoring experiments at behavioral and molecular biological levels, the fish were treated under different sublethal conditions of diazinon and their behavioral responses were observed . In this study we have successfully cloned a partial TH gene from the medaka fish through PCR screening of an ovary cDNA library. DNA sequencing analysis revealed that the amplified fragment was 327 bp encoding 109 amino acids. Comparing the DNA sequence of medaka TH with other species, TH gene revealed the DNA sequence was completely identical to that of rat TH. In the RT-PCR, 330 Up of mRNA was consistently amplified in all the treated samples including control There were no significant differences in the TH expression level regardless of treating concentrations (1∼5,000 ppb) and time (0∼48 hr) The reason appeared to be that RT-PCR was not performed using through a quantitative analysis normalized against an actin gene expression. Organ or tissue - specific detection of TH activity and mRNA as biomarkers will be a useful monitoring tool for neurobehavioral changes in fish influenced by toxic chemicals. Furthermore, quantitative analysis of locomotive patterns and its correlation with the neurochemical and molecular data would be highly useful in measuring toxicity and hazard ofvarious environmental pollutants.

  • PDF

The Value of ICAM-1 Expression and the Soluble ICAM-1(sICAM-1) Level as a Marker of Activity in Sarcoidosis: The Relationship Between the ICAM-1 Level and the Clinical Course of the Disease (유육종증의 활동성 지표로서의 ICAM-1)

  • Kim, Dong-Soon;Paik, Sang-Hoon;Shim, Tae-Sun;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.116-127
    • /
    • 1998
  • Background: The natural course of sarcoidosis is variable from spontaneous remission to significant morbidity or death. So the assessment of disease activity is important but no single parameter was generally accepted as a good marker. Recently several studies suggested that adhesion molecules, especially ICAM-1 can be a marker, but there are some controversies. And only few data are available about the relationship of ICAM-1 with clinical follow-up course. Methods: We measured the expression of adhesion molecules on BAL cells by flow cytometry and the level of soluble ICAM-1(sICAM-1) in serum and BALF at the time of diagnosis in 12 patients with active disease and 7 inactive sarcoidosis(5 male, 14 female, mean age: $39.4{\pm}10.7$ years, mean follow-up : $20{\pm}15$ months). Follow-up clinical course were compared with the changes in serum sICAMA-1 level and the adhesion molecule on BAL cells. Results: In the patients with active disease, the ICAM-1 on AM(RMFI: $3.68{\pm}1.71$) and sICAM-1 level in serum($582{\pm}193$ng/ml) and BAL fluid($47.8{\pm}16.5$ng/ml) were all higher than those of 7 inactive disease(RMFI: $1.89{\pm}0.75$, p=0.0298, serum: $294{\pm}117$ ng/ml, p=0.0049, BALF: $20.9{\pm}8.3$ ng/ml). In the active sarcoidosis, ICAM-1 on AM(RMFI : $1.51{\pm}0.84$) and serum sICAM-1 were decreased after the therapy($250{\pm}147$ ng/ml) but no significant change was noted in inactive disease. Also we found the initial ICAM-1 on AM and serum sICAM-1 had a significant correlation with the degree of improvement in PFT after the therapy. During the follow-up, the disease relapsed in 4 patients after the discontinuation of steroid and the serum sICAM-1 level went-up again at the time of relapse. Conclusion: Our data suggest that the serum sICAM-1 level and the ICAM-1 expression on AM can be a good marker of disease activity and also a predictor of outcome in sarcoidosis.

  • PDF

Effect of polymer of lysine on the mucin release from primary cultured hamster tracheal surface epithelial cells (염기성 아미노산인 라이신 중합체가 일차 배양된 햄스터 기관표면 상피세포에서의 점액소 유리에 미치는 영향)

  • Lee, Choong-Jae;Kim, Seon;Hong, Kyung-Hee
    • Journal of dental hygiene science
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • In the present study, we tried to investigate whether poly-L-lysine(PLL)(MW 78,000 and 9,600) significantly affect mucin release from cultured hamster airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3H$-glucosamine for 24 hr and chased for 30 min in the presence of varying concentrations of PLL to assess the effects on $^3H$-mucin release. Possible cytotoxicities of PLL were assessed by measuring Lactate Dehydrogenase(LDH) release during treatment. The results were as follows : (1) PLL significantly inhibited mucin release from cultured HTSE cells in a dose-dependent manner; (2) there was no significant release of LDH by treatment of PLL 9,600; (3) however, in the case of treatment of PLL 78,000, there was significant release of LDH during treatment. We conclude that PLL which has molecular weight under 10,000 might inhibit mucin release from airway goblet cells without significant cytotoxicity. This finding suggests that PLL might be used as a tool of research for the hypersecretion of airway mucus.

  • PDF

Chemical Structures and Physiological Activities of Plant Growth Substance, Malformin A's (식물생장조절물질 말포민 A동족체의 화학구조 및 생리활성)

  • Kim, K.W.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.73-84
    • /
    • 1995
  • Four malformin A's produced by Aspergillus niger van Tiegh. were separated by HPLC equipped with $C_{18}$ reversed-phase column and subjected to structural determination. Amino acid analyses and mass spectra data of the compounds indicate that they structurally resemble the cyclic pentapeptide malformin $A_1$. Their structures were deduced by two dimensional NMR and MS/MS experiments as cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-Ile for $A_1$, cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-Val for $A_2$, cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-Leu for $A_3$, and cyclo-D-Cys-D-Cys-L-Val-D-Ile-L-Val for $A_4$. Among the mal-formin A's, the structure of $A_3$ was identical to that of malformin C, which was produced by A. niger strain AN-1. All the malformin A's caused severe curvatures of corn(Zea mays L.) roots and the activities of the malformin A's with molecular weight 529 were greater than those with molecular weight 515. Malformin $A_1$ caused the corn root curvature by 83% at a concentration of $0.25{\mu}M$. In the mung bean(Phaseolus aureus Roxb.) hypercotyl segment test, however, the molecular weight of malformin A's was not a factor influencing the physiological activities. Malformin $A_1$ stimulated the growth of mung bean hypercotyles by 165% at a $0.1{\mu}M$ concentration.

  • PDF

Quartz Dissolution by Irradiated Bacillus Subtilis (방사선을 조사(照射)한 Bacillus Subtilis에 의한 석영 용해)

  • Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • The effects of bacterial lysis on the rate of quartz dissolution were investigated under pH 7 condition using Bacillus subtilis cells which were either irradiated or non-irradiated with gamma ray. The amount of dissolved organic carbon (DOC) which resulted from bacterial lysis increased in slurries of quartz and bacteria mixture over experimental period. Lysis of non-irradiated bacteria led to the elevated concentration of dissolved silicon when compared with abiotic control. Concomitant increase in the amounts of DOC and dissolved silicon over time indicated that lixiviation of silicon from quartz was due to bacterial lysis. Higher amounts of DOC and dissolved silicon were present in the irradiated bacterial slurries than those of non-irradiated bacteria. The enhancement of quartz dissolution in the irradiated bacterial slurries was likely attributed to disruption of organic molecules in the bacterial cells by gamma ray and formation of effective ligands for quartz dissolution. The results suggest that the effects of bacterial lysis on mineral weathering rate should be considered for prediction of time for released radionuclides to migrate to surface biosphere in high level radioactive waste disposal site.

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors (체내 시계 유전자 PER1과 PER2의 종양억제자 기능)

  • Son, Beomseok;Do, Hyunhee;Kim, EunGi;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1225-1231
    • /
    • 2017
  • Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.