DOI QR코드

DOI QR Code

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors

체내 시계 유전자 PER1과 PER2의 종양억제자 기능

  • Son, Beomseok (Department of Integrated Biological Science, Pusan National University) ;
  • Do, Hyunhee (Department of Biology Education, Korea National University of Education) ;
  • Kim, EunGi (Department of Integrated Biological Science, Pusan National University) ;
  • Youn, BuHyun (Department of Integrated Biological Science, Pusan National University) ;
  • Kim, Wanyeon (Department of Biology Education, Korea National University of Education)
  • 손범석 (부산대학교 일반대학원 생명시스템학과) ;
  • 도현희 (한국교원대학교 제3대학 생물교육학과) ;
  • 김은기 (부산대학교 일반대학원 생명시스템학과) ;
  • 윤부현 (부산대학교 일반대학원 생명시스템학과) ;
  • 김완연 (한국교원대학교 제3대학 생물교육학과)
  • Received : 2017.09.08
  • Accepted : 2017.10.25
  • Published : 2017.10.30

Abstract

Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.

암을 포함한 다양한 인간의 질병 발생이 circadian clock 유전자의 변형된 발현 양상과 깊은 연관관계를 나타내고 있다. 세포 주기와 세포 성장은 circadian rhythm과 연결되어 있으며, 이를 조절하는 clock 유전자의 비정상적인 발현은 결국 종양 발생과 암의 발달을 유발하게 된다. Circadian clock에 관한 분자적 기전은 다수의 clock activator와 clock repressor의 통합적인 조절에 따른 전사 및 번역이 포함된 음성피드백 고리로 구성되어 있다. 이러한 circadian rhythm의 자동조절 기전에 의해 전체 유전체의 약 10~15%가 전사 수준에서 영향받는 것으로 나타났다. 많은 clock 유전자들 중, Period 1 (Per1)과 Period 2 (Per2)는 clock repressor 유전자로 정상적인 생리적 리듬을 조절하는 것에 기여한다. PER1과 PER2는 cyclin, CDK, CKI를 포함하는 세포 주기 조절자의 발현에 관여함이 밝혀졌으며, 다양한 암에서 PER1과 PER2의 발현 감소가 보고되었다. 따라서, 본 논문에서는 PER1과 PER2의 circadian rhythm에서의 분자적 기능과 종양 발생과 관련된 PER1과 PER2의 하위 표적인자에 대해 살펴보고, 암 치료를 위한 새로운 치료 표적과 암의 예후를 예측하기 위한 분자 지표로써의 PER1과 PER2의 가능성에 대해 서술하고자 한다.

Keywords

References

  1. Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M. and Weaver, D. R. 2001. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525-536. https://doi.org/10.1016/S0896-6273(01)00302-6
  2. Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander, E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J. and Meyerson, M. 2001. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA 98, 13790-13795. https://doi.org/10.1073/pnas.191502998
  3. Cadenas, C., van de Sandt, L., Edlund, K., Lohr, M., Hellwig, B., Marchan, R., Schmidt, M., Rahnenfuhrer, J., Oster, H. and Hengstler, J. G. 2014. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle 13, 3282-3291. https://doi.org/10.4161/15384101.2014.954454
  4. Cao, Q., Gery, S., Dashti, A., Yin, D., Zhou, Y., Gu, J. and Koeffler, H. P. 2009. A role for the clock gene per1 in prostate cancer. Cancer Res. 69, 7619-7625. https://doi.org/10.1158/0008-5472.CAN-08-4199
  5. Chen, B., Tan, Y., Liang, Y., Li, Y., Chen, L., Wu, S., Xu, W., Wang, Y., Zhao, W. and Wu, J. 2017. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Oncol. Lett. 13, 423-428. https://doi.org/10.3892/ol.2016.5430
  6. Chen, S. T., Choo, K. B., Hou, M. F., Yeh, K. T., Kuo, S. J. and Chang, J. G. 2005. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26, 1241-1246. https://doi.org/10.1093/carcin/bgi075
  7. Dardente, H. and Cermakian, N. 2007. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24, 195-213. https://doi.org/10.1080/07420520701283693
  8. Dibner, C., Schibler, U. and Albrecht, U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549. https://doi.org/10.1146/annurev-physiol-021909-135821
  9. Fu, L., Pelicano, H., Liu, J., Huang, P. and Lee, C. 2002. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41-50. https://doi.org/10.1016/S0092-8674(02)00961-3
  10. Fu, X. J., Li, H. X., Yang, K., Chen, D. and Tang, H. 2016. The important tumor suppressor role of PER1 in regulating the cyclin-CDK-CKI network in SCC15 human oral squamous cell carcinoma cells. Onco Targets Ther. 9, 2237-2245.
  11. Gachon, F. 2007. Physiological function of PARbZip circadian clock-controlled transcription factors. Ann. Med. 39, 562-571. https://doi.org/10.1080/07853890701491034
  12. Gery, S., Komatsu, N., Baldjyan, L., Yu, A., Koo, D. and Koeffler, H. P. 2006. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell 22, 375-382. https://doi.org/10.1016/j.molcel.2006.03.038
  13. Gotoh, T., Vila-Caballer, M., Santos, C. S., Liu, J., Yang, J. and Finkielstein, C. V. 2014. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol. Biol. Cell 25, 3081-3093. https://doi.org/10.1091/mbc.E14-05-0993
  14. Gotoh, T., Kim, J. K., Liu, J., Vila-Caballer, M., Stauffer, P. E., Tyson, J. J. and Finkielstein, C. V. 2016. Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor Period 2. Proc. Natl. Acad. Sci. USA 113, 13516-13521. https://doi.org/10.1073/pnas.1607984113
  15. Grechez-Cassiau, A., Rayet, B., Guillaumond, F., Teboul, M. and Delaunay, F. 2008. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J. Biol. Chem. 283, 4535-4542. https://doi.org/10.1074/jbc.M705576200
  16. Green, C. B., Takahashi, J. S. and Bass, J. 2008. The meter of metabolism. Cell 134, 728-742. https://doi.org/10.1016/j.cell.2008.08.022
  17. Hsu, C. M., Lin, P. M., Lai, C. C., Lin, H. C., Lin, S. F. and Yang, M. Y. 2014. PER1 and CLOCK: potential circulating biomarkers for head and neck squamous cell carcinoma. Head Neck 36, 1018-1026. https://doi.org/10.1002/hed.23402
  18. Hua, H., Wang, Y., Wan, C., Liu, Y., Zhu, B., Yang, C., Wang, X., Wang, Z., Cornelissen-Guillaume, G. and Halberg, F. 2006. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 97, 589-596. https://doi.org/10.1111/j.1349-7006.2006.00225.x
  19. Huber, A. L., Papp, S. J., Chan, A. B., Henriksson, E., Jordan, S. D., Kriebs, A., Nguyen, M., Wallace, M., Li, Z., Metallo, C. M. and Lamia, K. A. 2016. CRY2 and FBXL3 Cooperatively Degrade c-MYC. Mol. Cell 64, 774-789. https://doi.org/10.1016/j.molcel.2016.10.012
  20. Jung-Hynes, B., Huang, W., Reiter, R. J. and Ahmad, N. 2010. Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J. Pineal Res. 49, 60-68.
  21. Lengyel, Z., Lovig, C., Kommedal, S., Keszthelyi, R., Szekeres, G., Battyani, Z., Csernus, V. and Nagy, A. D. 2013. Altered expression patterns of clock gene mRNAs and clock proteins in human skin tumors. Tumour Biol. 34, 811-819. https://doi.org/10.1007/s13277-012-0611-0
  22. Liu, B., Xu, K., Jiang, Y. and Li, X. 2014. Aberrant expression of Per1, Per2 and Per3 and their prognostic relevance in non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 7, 7863-7871.
  23. Lowrey, P. L. and Takahashi, J. S. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441. https://doi.org/10.1146/annurev.genom.5.061903.175925
  24. Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F. and Okamura, H. 2003. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255-259. https://doi.org/10.1126/science.1086271
  25. Mazzoccoli, G., Panza, A., Valvano, M. R., Palumbo, O., Carella, M., Pazienza, V., Biscaglia, G., Tavano, F., Di Sebastiano, P., Andriulli, A. and Piepoli, A. 2011. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol. Int. 28, 841-851. https://doi.org/10.3109/07420528.2011.615182
  26. Mokros, L., Karbownik, M. S., Nowakowska-Domagala, K., Szemraj, J., Wieteska, L., Wozniak, K., Witusik, A., Antczak, A. and Pietras, T. 2016. Haloperidol, but not olanzapine, may affect expression of PER1 and CRY1 genes in human glioblastoma cell line. Biol. Rhythm Res. 47, 865-871. https://doi.org/10.1080/09291016.2016.1202379
  27. Mteyrek, A., Filipski, E., Guettier, C., Okyar, A. and Levi, F. 2016. Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget 7, 85832-85847.
  28. Okabe, T., Kumagai, M., Nakajima, Y., Shirotake, S., Kodaira, K., Oyama, M., Ueno, M. and Ikeda, M. 2014. The impact of HIF1alpha on the Per2 circadian rhythm in renal cancer cell lines. PLoS One 9, e109693. https://doi.org/10.1371/journal.pone.0109693
  29. Repouskou, A. and Prombona, A. 2016. c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochim. Biophys. Acta. 1859, 541-552. https://doi.org/10.1016/j.bbagrm.2016.02.001
  30. Reppert, S. M. and Weaver, D. R. 2002. Coordination of circadian timing in mammals. Nature 418, 935-941. https://doi.org/10.1038/nature00965
  31. Reszka, E., Przybek, M., Muurlink, O. and Peplonska, B. 2017. Circadian gene variants and breast cancer. Cancer Lett. 390, 137-145. https://doi.org/10.1016/j.canlet.2017.01.012
  32. Richardson, A. L., Wang, Z. C., De Nicolo, A., Lu, X., Brown, M., Miron, A., Liao, X., Iglehart, J. D., Livingston, D. M. and Ganesan, S. 2006. X chromosomal abnormalities in basal- like human breast cancer. Cancer Cell 9, 121-132. https://doi.org/10.1016/j.ccr.2006.01.013
  33. Scheiermann, C., Kunisaki, Y. and Frenette, P. S. 2013. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190-198. https://doi.org/10.1038/nri3386
  34. Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. and Reppert, S. M. 2000. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019. https://doi.org/10.1126/science.288.5468.1013
  35. Siepka, S. M., Yoo, S. H., Park, J., Song, W., Kumar, V., Hu, Y., Lee, C. and Takahashi, J. S. 2007. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129, 1011-1023. https://doi.org/10.1016/j.cell.2007.04.030
  36. Storch, K. F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H. and Weitz, C. J. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83. https://doi.org/10.1038/nature744
  37. Su, X., Chen, D., Yang, K., Zhao, Q., Zhao, D., Lv, X. and Ao, Y. 2017. The circadian clock gene PER2 plays an important role in tumor suppression through regulating tumor-associated genes in human oral squamous cell carcinoma. Oncol. Rep. 38, 472-480. https://doi.org/10.3892/or.2017.5653
  38. Sun, C. M., Huang, S. F., Zeng, J. M., Liu, D. B., Xiao, Q., Tian, W. J., Zhu, X. D., Huang, Z. G. and Feng, W. L. 2010. Per2 inhibits k562 leukemia cell growth in vitro and in vivo through cell cycle arrest and apoptosis induction. Pathol. Oncol. Res. 16, 403-411. https://doi.org/10.1007/s12253-009-9227-0
  39. Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775. https://doi.org/10.1038/nrg2430
  40. Tamiya, H., Ogawa, S., Ouchi, Y. and Akishita, M. 2016. Rigid Cooperation of Per1 and Per2 proteins. Sci. Rep. 6, 32769. https://doi.org/10.1038/srep32769
  41. Wood, P. A., Yang, X. and Hrushesky, W. J. 2009. Clock genes and cancer. Integr. Cancer Ther. 8, 303-308.
  42. Xia, H. C., Niu, Z. F., Ma, H., Cao, S. Z., Hao, S. C., Liu, Z. T. and Wang, F. 2010. Deregulated expression of the Per1 and Per2 in human gliomas. Can. J. Neurol. Sci. 37, 365-370. https://doi.org/10.1017/S031716710001026X
  43. Zeng, Z. L., Wu, M. W., Sun, J., Sun, Y. L., Cai, Y. C., Huang, Y. J. and Xian, L. J. 2010. Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J. Biochem. 148, 319-326. https://doi.org/10.1093/jb/mvq069
  44. Zhanfeng, N., Yanhui, L., Zhou, F., Shaocai, H., Guangxing, L. and Hechun, X. 2015. Circadian genes Per1 and Per2 increase radiosensitivity of glioma in vivo. Oncotarget 6, 9951-9958. https://doi.org/10.18632/oncotarget.3179
  45. Zhao, H., Zeng, Z. L., Yang, J., Jin, Y., Qiu, M. Z., Hu, X. Y., Han, J., Liu, K. Y., Liao, J. W., Xu, R. H. and Zou, Q. F. 2014. Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int. J. Clin. Exp. Pathol. 7, 619-630.