• Title/Summary/Keyword: 분자제조

Search Result 1,257, Processing Time 0.033 seconds

돈피 콜라겐 유래 올리고펩타이드 제조를 위한 방사선조사의 이용

  • Jo, Yeong-Jun;Seo, Jeong-Eun;Kim, Yeong-Ho;Kim, Yun-Ji;Lee, Nam-Hyeok;Hong, Sang-Pil
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.10a
    • /
    • pp.150-152
    • /
    • 2005
  • 환경친화적 기술로 알려진 방사선조사기술(RT: Radiation Technology)을 이용하여 돈피 유래 올리고펩타이드를 제조하고자 하였다. 생 박 돈피를 hammer mill과 chopper를 이용하여 조분쇄한 후 $-20^{\circ}C$ 아세톤으로 탈지하였고, ${\gamma}$-ray irradiator를 이용하여 0, 20, 40, 60, 100, 150, 200, 250, 300 kGy의 총 흡수량을 얻도록 탈지돈피에 방사선조사를 실시하였다. 방사선조사에 의한 탈지돈피의 pH 변화는 0${\sim}$100 kGy 조사선량에서는 미비했으나, 150 kGy 이상에서는 소폭 증가하였다. 탈지돈피의 단백질 함량 중 콜라겐 함량은 93% 이었으며 방사선조사된 돈피콜라겐을 효소처리하면 효소반응 시간이 길어질수록 약 24 kDa 범위에서 밴드가 확인되었고, 100 kGy 이상의 고선량에서는 효소반응 2시간 이후 10% polyacrylamide 전기영동 겔의 최 하단에 머무는 분자량의 펩타이드가 다량 관찰되었다. 용해도 변화는 20${\sim}$60 kGy의 선량에서는 효소반응 시간이 길어질수록(1시간${\sim}$4시간) 최대 65${\sim}$80%의 용해도 증가를 보였고, 반면에 100 kGy 이상에서는 효소반응 시간에 관계없이 80% 이상, 300 kGy에서는 90% 이상의 용해도를 보여주려다. 점도와 탁도는 100 kGy 이상의 고선량에서 짧은 효소반응 시간(1시간)에 급격히 감소하였다. 가수 분해물(300 kGy)을 gel permeation chromatography한 결과 분자량 9,000 Da의 주 피크가 검출되었다.

  • PDF

Molecular Engineering of Epoxide Hydrolases for Production of Enantiopure Epoxides (분자공학 기반의 광학활성 에폭사이드 제조용 epoxide hydrolase 생촉매 개발)

  • Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.168-174
    • /
    • 2006
  • Enantiopure epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of enantiopure epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-prepare catalysts. In this paper, recent progresses In molecular engineering of EHs are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of enantiopure epoxides.

A Study on the Mechanical Characteristics and Waterproof Performance of Impermeable Asphalt Pavement Materials (불투수성 아스팔트 포장재료의 방수기능과 역학적 특성에 관한 연구)

  • Kim, Injoong;Kim, Kyeongjin;Lee, Seungyong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.242-248
    • /
    • 2016
  • This paper presents features of impermeable asphalt pavement material that uses thermoplastic GMA-based polymer(SIS, Stylene Isoprene Stylene) to improve the waterproof performance. Furthermore, as part of this study, the aerodynamic characteristics of the asphalt paving materials, using the newly suggested thermoplastic polymer, are identified through experiments. In the experiment, the aerodynamic characteristics were analyzed by testing on stability, flow values, porosity, dynamic stability, tensile strength ratio and skid resistance in accordance with KS standard and ASTM standard.

Effect of Solubility Parameter of Solvent Additives on the Self-Assembly Behavior of Conjugated Polymers (용매 첨가제의 용해도 계수가 공액고분자의 자기조립 거동에 미치는 영향)

  • Kwon, Eun Hye;Lee, Jeong Ik;Park, So Young;Hahm, Yea Eun;Park, Yeong Don
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.5
    • /
    • pp.21-32
    • /
    • 2020
  • 유기전자소자는 용액공정을 통한 대량생산이 가능하기 때문에 기존 무기전자소자에 비해 제조비용이 저렴하고 대면적 생산이 가능하며, 유기분자의 본연 특징으로 인해 유연하고 가벼운 소자를 구현할 수 있다. 그러나 무기 반도체에 비하여 현저히 낮은 전하이동도 특성은 유기전자소자의 상용화에 걸림돌이 되고 있다. 따라서 공액고분자의 결정화도, 모폴로지, 분자배향 최적화를 통한 자기조립 박막 제조는 전하이동을 원활히 하기 때문에 유기전자소자의 개발에 필수적이다. 본 기고에서는 유기전자소자의 활성층으로 사용되는 공액고분자의 자기조립을 유도하기 위한 다양한 특성을 갖는 용매 첨가제의 효과에 대해서 알아보고, 특히 첨가제의 용해도 계수가 공액고분자의 자기조립 거동에 미치는 영향에 대해 자세히 논의하고자 한다.

Synthesis and Characterization of Theophylline Molecularly Imprinted Polymers (테오필린 분자 날인 고분자의 합성 및 특성)

  • Ryu, Ho-Sik;Kim, Beom-Soo;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • Molecularly imprinting technology is an effective method to prepare a synthetic material with a high selectivity to a target molecule. In this study, a molecularly imprinted polymer (MIP) was synthesized via UV-polymerization using theophylline and UV-curable polyester-acrylate resin as a template molecule and a crosslinker, respectively. To elucidate the effects of functional monomer type on the performance of the MIP, each MIP was synthesized using mathacrylic acid, acrylic acid, and acryl amide as functional monomers. Each MIP showed higher rebinding capacity to theophylline than its corresponding non-imprinted polymer (NIP). The MIP synthesized using mathacrylic acid as a functional monomer showed the highest rebinding capacity to theophylline. The selectivity of the MIP was investigated using a solution with caffeine having a very similar structure to theophylline. The binding performance of the MIP to theophylline decreased when distilled water was used as a solvent, which has more polarity than chloroform.

Characteristics of Rubus coreanus Miq. Fruits at Different Ripening Stages (숙성에 따른 토종 복분자 딸기의 특성)

  • Kim, Ji-Myoung;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.341-347
    • /
    • 2011
  • To develop a healthy functional food containing Rubus coreanus fruit (RCF) powder with different degrees of ripening, the composition, physicochemical properties, and antioxidant activity of native RCF during ripening were investigated and compared with Rubus occidentalis fruit (ROF). Ripened RCF was bright red in color, whereas ripened ROF was dull and dark red in color. The seeds of RCF were softer and smaller than those of ROF. Crude protein, crude lipid, and total sugar content of RCF powder increased with increased ripening time, whereas ash and total dietary fiber contents decreased with increased ripening time. Color differences increased with Increased ripening. Eighteen types of amino acids were analyzed from RCF, and glutamic acid had the highest content. RCF powder had the highest level of potassium and calcium and did not contain any hazardous metals. Mineral and organic acid contents decreased according to ripening.

Quality Characteristics of Black Raspberry Wine added with wild grape by Yeast Strains and Fermentation Conditions (효모 종류와 발효조건에 따른 머루 첨가 복분자주의 품질 특성)

  • Kong, Tae-In;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3361-3369
    • /
    • 2015
  • The objective of this study was to improve the quality of black raspberry wine added with wild grape, based on selection of yeast strains and fermentation conditions. The Y1 yeast(Lalvin 71B) indicated significantly higher lactic acid, ester, fusel oil content after fermented mashing than other samples tested and had an effect on the reduction of acidity and enhanced aroma of black raspberry wine. In addition, the high fermentation temperature($25^{\circ}C$) using Y1 yeast showed much higher tendency to retain components of aroma (ethyl acetate, higher alcohols) and the highest overall preference including sensory evaluation than that of low fermentation temperture($15^{\circ}C$). Thus, the fermentation using Y1 yeast at $25^{\circ}C$ can be applied to positively improve the taste and flavor of production of black raspberry wine added wild grape.

Development of Molecular Dynamics Model for Water Electrolysis Ionomer (수전해용 이오노머 분자동역학 모델 개발)

  • Kang, Hoseong;Park, Chi Hoon;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.433-442
    • /
    • 2020
  • In this study, in order to build a molecular dynamics simulation model of ionomer for water electrolysis, an ionomer model that reflects the characteristics of a water electrolysis system in which excess water molecules exist was compared to an ionomer built according to the conventional simulation method of the fuel cells membrane. The final ionomer MD models have a strong phase separation and water channel that is one of the important characteristics of the perfluorinated ionomer, and are stable and water-insoluble under excessive water and high temperature conditions. In the ionomer MD models built in this study, the excess water molecules decrease an ion conductivity due to the dilution of ions, but increase a hydrogen diffusivity. Therefore, it is necessary to design the molecular structure of ionomers for water electrolysis in experimental studies as well as molecular dynamics studies according to the characteristics of the water electrolysis system reported in this study.

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition -1. Changes in Viscosity, Average Molecular Weight and Chemical Structure of Depolymerized Alginate- (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리${\cdot}$화학적 및 생물학적 특성에 관한 연구 -1. 저분자 alginate의 점도, 평균분자량 및 분자구조의 변화-)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • Alginate obtained from brown algae had various physicochemical and rheological properties and could used as a dietary fiber, However, alginate has not been widely applied to the food industry, since it had high viscosity, high gelling effect conjugated with some mineral, and low solubility. To improve functionality of alginate, partially develymerized alginates, which was water-soluble dietary fiber were obtained by hydrolysis of alginate from the sea tangle, Laminaria japonicus, heated at $121^{\circ}C$. Effects of depolymerization of alginate on the changes of viscosity and average molecular weight, block composition ratio of mannuronate to guluronate (M/G ratio), chemical properties using $PT-IR, ^1H-NMR, and ^(13)C-NMR$ spectrum were investigated. The average molecular weight and viscosity of the alginate were rapidly decreased with the thermal decomposition, and estimated to be 1,307,415 dalton and 284,000 cps, before heating, 728,106 and 3,940.29 cps after 30 min heating, 102,635 and 22.22 cps after 2.5 hrs heating, 51,205 and 12.05 cps after 3 hrs, and 10,049 and 4.28 cps after 6.5 hrs, respectively. The M/G ratio was increased with the heating time, while MM-block did not show any changes and GG-block diminished. The results of $FT-IR, ^1H-NMR and ^(13)C-NMR$ spectrum suggested that changes of molecular structure did not occur by the thermal decomposition.

  • PDF

Optimization of the formulation for manufacturing of Bokbunja (Rubus coreanus Miquel)-black mulberry (Morus alba) herbal pill by D-optimal mixture design approach (D-optimal mixture design 이용 복분자-오디 환 제조 배합비 최적화)

  • Moon, Jin-Young;Hwang, Su-Jung;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • The optimal recipe for manufacturing composite honey-based herbal pills mainly comprising Rubus coreanus powder (RCP), black mulberry powder (BMP), and vitamin C was investigated. Honey-based herbal pills were prepared by mixing these powders, binding them with honey, and then forming a round shape. The experiment was designed based on the D-optimal mixture design, which included 12 experimental points with one replicate for three independent variables as follows: RCP (10~35%), BMP (10~35%), and vitamin C (5~10%). In addition, the dependent variables (total phenolic and flavonoid content and antioxidant activity) were measured and used to optimize the manufacturing conditions. The results showed that high amounts of RCP were correlated with high total flavonoid content, whereas the addition of high amounts of vitamin C resulted in higher antioxidant activity. In conclusion, an optimized formulation for the honey-based herbal pill was found to contain 35% RCP, 10% BMP, and 10% vitamin C.