• 제목/요약/키워드: 분산 성분 모형

검색결과 51건 처리시간 0.024초

분산성분모형에서 요인의 배치구조가 모형선택법에 미치는 영향에 대한 실험연구 (Effect of Experimental Layout on Model Selection under Variance Components Models: A Simulation Study)

  • 이용희
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.1035-1046
    • /
    • 2015
  • 분산성분모형은 다양한 임의 요인들이 반응변수에 미치는 영향을 선형식의 형태로 나타내는 매우 유용하고 널리 사용되는 통계적 모형이다. 분산성분모형은 요인의 배치나 관측 자료의 구조에 따라 크게 교차배치와 지분배치로 나누어진다. 본 논문은 분산성분모형에서 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 체계적인 모의실험을 통하여 제시하고자 한다. 이원배치 분산성분모형에서 정보기준에 근거한 모형선택법, 즉 BIC 또는 AIC를 사용하는 경우 요인의 배치구조와 분산성분의 크기에 따라 모형선택법의 경험적인 성질이 다르게 나타나는 현상을 소규모 모의실험을 통하여 보여준다. 모의실험 결과에서 모형선택법의 경험적 성질이 요인의 배치 설계에 따라 다르게 나타난다는 사실을 확인하였으며 특히 요인의 배치구조가 지분 설계구조일때 내포된 요인의 분산성분의 상대적인 크기가 커짐에 따라 자료를 생성하는 모형보다 작은 모형을 선택하는 경향이 있다는 것이 모의실험으로 확인되었다.

이원혼합모형에서 고정효과의 신뢰구간에 관한 분산성분추정량의 선택

  • 이장택
    • Communications for Statistical Applications and Methods
    • /
    • 제5권3호
    • /
    • pp.623-632
    • /
    • 1998
  • 이원혼합모형에서 고정효과의 추정가능한 함수에 대한 신뢰구간을 구하는 경우에 어떤 분산성분추정량을 선택하는 것이 가장 바람직한가를 모의실험을 통하여 살펴본다 혼합모형에서는 t-분포와 일반화최소제곱추정량을 사용하여 신뢰구간을 구할 수 있는데, 일반적으로 분산성분을 알 수 없기 때문에 분산성분을 반드시 추정하여야만 한다. 이 경우 분산성분의 추정량으로 가장 많이 사용되는 추정량들인 Henderson의 방법 III 추정량, 사전추측값이 1인 MINQUE 추정량, MLE(최우추정량), REMLE(제한최우추정량)를 이용하여 분산행렬을 추정하고, 신뢰구간의 포함범위확률과 평균길이를 모의실험을 통하여 살펴본다. 모의실험의 결과는 4가지 추정량 모두 비슷한 신뢰구간의 포함범위확률과 평균길이를 갖는 것으로 판명되었다.

  • PDF

불균형일원변량모형에서 분산성분비율의 추정

  • 이장택
    • Communications for Statistical Applications and Methods
    • /
    • 제4권3호
    • /
    • pp.611-616
    • /
    • 1997
  • 불균형일원변량모형에서 분산성분비율의 점추정에 관한 문제가 고려되어진다. 분산성분비율에 대한 새로운 추정량이 제안되며, 분산성분비율에 대한 여러가지 점추정량과 제안된 추정량을 평균자승오차(MSE)의 관점에서 추정량들의 효율성을 모의실험을 통하여 살펴본다. 결론적으로 제안된 추정량은 수준의 수가 크고 불균형정도가 매우 심한 경우를 제외하고 다른 추정량들보다 훨씬 MSE 효율성이 높아짐을 알 수 있다.

  • PDF

사영을 이용한 일원 분산성분 (Variance components in one-factor random model by projections)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.381-387
    • /
    • 2011
  • 본 논문은 일원 확률모형의 가정하에 실험자료를 분석할 때 확률모형과 관련된 분산성분을 추정하는 문제를 다루고 있다. 분산성분의 추정방법으로 적률법을 이용하고 있다. 적률법을 이용할 때 필요한 두 가지 계산과정은 요인의 변동에 따른 제곱합과 제곱합의 기대값 계산이다. 제곱합의 계산으로 사영을 어떻게 이용하는 가를 논의하고 있다. 제곱합의 기대값 계산을 위해 분산성분의 계수로 관측되는 관련행렬의 고유근을 이용하는 방법을 다루고 있다. 분산성분의 적률추정량으로 사영과 고유근을 이용한 분산성분의 추정방법이 Hartley (1967)의 합성법보다 간편하고 효율적인 방법임을 논의하고 있다.

만곡부 이차류 특성을 고려한 수심 적분된 2차원 수치모형 (A depth-integrated numerical model considering the secondary flows in the channel bend)

  • 김태범;최병웅;최성욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.555-559
    • /
    • 2009
  • 난류응력은 순간속도성분을 시간평균성분과 편차성분의 합으로 보고 Navier-Stokes 방정식으로부터 Reynolds 방정식을 유도할 때 나타나게 된다. Reynolds 방정식으로부터 수심 적분된 천수방정식을 유도하는 과정에서 시간 평균된 유속성분을 수심 적분된 유속성분과 편차성분의 합으로 본다면, 분산응력 (dispersion stress)이라고 하는 추가적인 새로운 항이 잔류하게 된다. 점성응력, 난류응력, 그리고 분산응력을 통칭하여 유효응력 (effective stress)이라고 한다. 일반적으로 수심에 비해 수로 폭이 넓은 개수로에서는 유효응력이 흐름특성의 수치 근사해에 큰 영향을 미치지 못한다고 가정하여 2차원 수심적분 모형에서 유효응력을 생략하기도 한다. 또한 유효응력을 적용하더라도, 점성응력이 난류응력에 비해 무시할 만큼 작다고 가정하여 난류응력만을 적용하며, 분산응력은 무시된다. 하지만 만곡부에서는 원심력과 편수위로 인한 횡방향 압력의 불균형이 발생하기 때문에, 만곡부의 이차류가 발생되며, 유속의 연직방향 분포도 일정하지 않게 된다. 따라서 본 연구의 목적은 만곡부의 이차류 특성을 수심적분 2차원 모형에 반영하기 위해 분산응력을 고려한 모형의 개발 및 검증이다. 불규칙한 모의영역을 원활히 나타낼 수 있도록 곡선좌표계를 사용하는 여타 모형들과 달리 유한유소법을 이용하여 수치해를 구하며, 따라서 x, y 좌표축을 사용하는 데카르트 좌표계를 사용하여 지배방정식을 나타낸다. 분산응력의 유 무에 따른 수치결과를 Rozovskii의 $180^{\circ}$ 만곡수로 실내실험 자료와 비교하여 개발 모형을 검증한다.

  • PDF

분산 성분 모형에 대한 붓스트랩 보정 신뢰구간 (Bootstrap Calibrated Confidence Bound for Variance Components Model)

  • 이용희
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.535-544
    • /
    • 2006
  • 분산 성분 모형 하에서 분산 성분들의 함수에 대한 통계적인 추론, 특히 소표본 하에서의 신뢰구간에 대한 방법들은 오랜 기간에 걸쳐서 여러 가지 방법들이 개발되어져 왔다. 그 대표적인 방법이 Graybill and Wang(1980)에 의해 제안된 수정 대표본 방법에 의거한 신뢰구간 추정법이며 현재까지 다양한 실험계획 방법 하에서 분산 성분들의 여러 가지 형태의 함수들에 대하여 확장과 개량이 이루어져 왔다. 본 연구에서는 분산 성분 모형의 균형 실험 가정 하에서 분산 성분들의 선형 결합이 관심있는 모수일 때 분산 분석에 의해 얻어진 수정 대표본 신뢰구간의 실제 포함확률을 툴스트랩 보정을 이용하여 개선하는 방법에 대하여 논의한다. 붓스트랩 보정을 이용함으로서 신뢰구간의 포함 확률의 정도는 점근적 이차 차수까지 개선되며 특히 선형 결합의 계수들이 모두 양수이고 결합의 수가 증가할 경우 수정 대표본 신뢰구간의 포함확률이 주어진 신뢰계수보다 항상 커지게 되는 단점을 개선할 수 있음을 보인다. 제안된 붓스트랩 보정 신뢰구간의 효율을 소표본의 경우에 모의실험을 통하여 평가한다.

지분계획의 분산성분 (Variance Components of Nested Designs)

  • 최재성
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1093-1101
    • /
    • 2015
  • 본 논문은 요인들의 처리구조와 실험단위들의 설계구조에서 지분이 발생하는 경우의 지분계획모형에서 분산성분을 구하는 방법을 다루고 있다. 지분구조의 고정효과와 확률효과 그리고 실험단위들의 지분구조에 따른 오차성분을 포함하는 지분계획모형을 제안하고 있다. 모형내 확률효과의 분산성분과 다수의 오차항에 따른 분산성분을 추정하는 방법으로 상수적합법을 이용하고 있다. 상수적합법에 의한 제1종 제곱합의 계산은 모형의 단계별 적합에서 주어지는 모형행렬의 사영을 이용하고 구하고 있다. 사영을 이용한 변동요인별 제1종 제곱합의 기댓값 계산에 Hartley의 합성법이 이용된다. 단계별 방법에 의한 모형의 순차적 적합은 모형행렬로의 사영공간을 나타내는 사영행렬의 구조를 파악할 수 있는 이점이 있다.

균형일원변량모형에서 분산성분비율의 새로운 추정량

  • 이장택
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.43-51
    • /
    • 1996
  • 균형일원변량모형에서 분산성분비율의 점추정에 관한 문제가 고려되어진다. 분산성분비율에 대한 점추정량의 종류를 살펴보고 추정량의 평균자승오차(MSE)를 서로 비교하여 본다. 분산성분비율에 대한 새로운 추정량이 제 안되며, 제안된 추정량을 사용하면 모의실험을 통하여 Das (1992)가 고려한 여러가지 형태의 추정량들보다 급내상관계수 ${\rho}$의 값이 대략 0.2 < ${\rho}$ < 0.7인 경우에 MSE 효율성이 높아짐을 밝혔다.

  • PDF

사영에 의한 확률효과모형의 분석 (The analysis of random effects model by projections)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.31-39
    • /
    • 2015
  • 본 논문은 확률효과모형에서 사영에 근거한 분산성분을 구하는 방법을 다루고 있다. 분산성분을 추정하기 위한 ANOVA방법에서 제곱합의 계산에 사영을 이용하는 방법을 제시하고 있다. 분산성분을 구하기 위한 사영의 이용은 모형행렬에 의한 사영공간을 분산성분별 제곱합을 얻기 위한 상호직교하는 부분공간들로 분할하게 된다. 부분공간들로 분할하기 위해 모형행렬 X로의 사영에 단계별 방법(stepwise procedure)을 적용하여 해당하는 공간으로의 사영행렬을 구하는 방법을 다루고 있다. 단계별 방법에 의해 주어지는 부분공간들의 직교성으로 인해 사영행렬의 곱은 영행렬로 주어지는 성질을 갖는다. 단계별 방법에 의한 순차적 사영은 해당하는 공간으로의 사영행렬에 대한 확인과 사영행렬의 구조를 파악할 수 있는 이점이 있다. 또한 분산성분의 추정을 위한 제1종 제곱합을 구하기 위한 방법으로 유용하다.

이원 분산성분의 사영분석 (Projection analysis for two-way variance components)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권3호
    • /
    • pp.547-554
    • /
    • 2014
  • 본 논문은 실험자료에 대한 분석모형으로 이원 분산분석모형을 가정한다. 확률효과 모형의 가정하에 분산성분의 추정량을 구하기 위한 방법으로 적률법을 가정하고 있다. 분산성분의 적률 추정방법인 Henderson의 방법 I과 방법 III을 다루고 있다. Henderson의 두 방법에서 소개되는 제곱합 대신에 벡터공간에서의 사영을 활용하는 방법을 제시하고 있다. 또한 제곱합의 기대값 계산을 위해 두 방법 모두 Hartley의 합성법을 제공하고 있으나 본 논문에서는 관련행렬의 고유근을 이용할 수 있음을 제시하고 있다. 분산성분의 해를 얻기 위한 방법의 차이에서 유도되는 연립방정식들은 같지 않으나 양수의 분산성분들에 대한 해는 유사함을 보여주고 있다.