• Title/Summary/Keyword: 분사압

Search Result 96, Processing Time 0.025 seconds

An Analysis on Ultra High Pressure Impinging Diesel Spray Characteristics with Impinging Distance and Impinging Angle (극초고압 디젤충돌분무의 충돌거리 및 충돌각에 대한 분무특성 해석)

  • Jeong, D.Y.;Kim, H.J.;Chung, C.M.;Lee, J.T.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • To find suitable injection pressure, ultra high pressure impinging spray characteristics were investigated with a impinging distance and a impinging angle by using high pressure injection system. As impinging distance was increased, spray penetration was decreased but spray height was increased. For increase of injection pressure, spray penetration and spray height were increased until 2,500bar. But over this injection pressure region, the rate of increase was decreased suddenly.

  • PDF

A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System (전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구)

  • Jang, S.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

Nozzle and Gas Jet Flow in Laser Cutting (레이저 절단에서의 노즐 및 가스제트의 영향)

  • 방세윤;한유희
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 1994
  • 노즐에서 분사되는 제트의 거동에 대해 전반적으로 고찰해보고, 실제 후판의 레이저 절단성 실험 을 통해 노즐의 영향 및 혼합가스의 절단면 질 향상효과 등을 살펴보았다. 간략히 요약하면 다음 과 같다. 아음속제트는 노즐압력을 증가함에 따라 절단압력도 증가하지만 노즐과 재료사이의 거 리를 가능한 작게 유지하여야 하는 제약이 있다. 따라서 사용중에 손상이 가기 쉽다. 이를 해결하 고자 초음속제트의 사용이 연구되고 있지만 shock의 형성으로 인해 노즐압과 절단압은 매우 비선 형적인 관계를 갖는다. 따라서 (i)고압에서도 MSD가 형성되지 않고 주기적인 압력 재상승이 나 타나도록 하거나, (ii)Laval노즐을 이용해 shock구조가 형성되지 않고 큰 절단거리를 얻도록 하는 방법이 제시되고 있다. 초음속노즐의 후판 절단 적용 가능성을 분석해 본 결과 유동 박리 현상으 로 인해 후판보다는 박판의 향상을 위해서는 적절한 조성의 혼합가스를 사용하는 것이 아주 효과 적이었으며, 보조 가수 제트를 채용해 slag제거를 효율적으로 수행 할 수 있음을 확인하였다.

  • PDF

DME도입 시장환경

  • Gang, Jeong-Uk
    • LP가스
    • /
    • s.105
    • /
    • pp.43-50
    • /
    • 2006
  • 연료로서의 DME 디메틸에테르(화학식 CH -O-CH ,DME)는 당초 가정용 캔 스프레이 등 분사 약제인 프레온의 대체 물질로 사용되기 시작했다. 그 후 양호한 압축 착화성이나 무연 연소하는 성질을 가지는 등 디젤 엔진의 연로로서 LP 가스와 동등한 증기압을 가져 LP가스의 대체연료로서 현재 전 세계에서 활발히 연구개발이 이뤄지고 있다. DME의 재료는 천연가스, 석탄, 바이오매스 등 다양한 자원에서 제조가 가능한데 이들로부터 합성가스(CO,H )를 추출.합성해 제조한다. 이것은 경제규모에 미달하는 부존자원의 유효한 이용이나 자원의 다양화에도 연결되기 때문에 차세대 연료로서 주목받고 있다. 천연가스로부터 저가로 대량 생산이 가능한 직적법이나 메탄올을 탈수해 제조하는 간접법 등 제조 기술도 확립되어 있다.

  • PDF

대기압에서 실리콘 양자 점 제조 및 비휘발성 메모리의 응용

  • 안강호;안진홍;정혁
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.146-150
    • /
    • 2005
  • 상온/상압의 분위기에서 코로나 분사 합성법을 이용하여 반도체 실리콘 나노 입자를 제조하였으며, 실리콘 입자의 전기적 특성을 관찰하기 위해 p-type 실리콘웨이퍼 위에 실리콘 나노 입자를 증착시켰다. 이때, 제조된 실리콘 나노 입자의 크기는 약 10 nm이었으며 기하표준편차는 1.31로 단분산성을 나타내었다. 이러한 조건에서, 실리콘 나노 입자의 양자 점 효과를 이용한 비휘발성 반도체 메모리를 제조하여 메모리효과를 분석한 결과, flat band voltage의 차이가 약 1.5 Volt 발생함을 확인하였다.

  • PDF

Atomization Characteristics Experiment of Pintle Type Nozzle by the PDPA (PDPA에 의한 Pintle형 노즐의 미립화 특성실험 -식물유를 중심으로-)

  • 나우정;유병구;정진도
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • A simplified experiment was performed to figure out the atomization characteristics of highly viscous liquid of rice-bran oil by applying ultrasonic energy to improve the atomization of spray droplets. A spray system, an ultrasonic system, and three kinds of pintle-type nozzles(pin-edge angle: 5 , 10 , 15 ) were manufactured. To investigate the effects of ultrasonic energy on the atomization of a highly viscous liquid, a phase doppler particle analyzer was used for the measurement and calculation of spray droplets data. Nozzle opening pressures were chosen of 3 levels, i.e, 10, 13, 16 MPa. As a result, it could be concluded that the ultrasonic energy was effective to improve the spray atomization when applied to the fuel by means of 3 different nozzles because of the effects of the liquid fuel cavitation and relaxation between molecules caused by ultrasonic energy. The improvement rate of the spray atomization by the ultrasonic spray atomization by the ultrasonic spray compared with the conventional spray was about 10% increase in the case of pintle type nozzles. With the increase of pin-edge angles the distribution lines by nozzle opening pressures are declined for both conventional and ultrasonic sprays. This means that the increase of the pin-edge angle improves the atomization of sprays.

  • PDF

Fabrication and Magnetic Properties of Ultrathin Co-based Amorphous Alloy (코발트계 극박형 비정질합금의 형성과 자기적 성질)

  • 노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.255-260
    • /
    • 1998
  • Fabrication condition and magnetic properties of ultrathin Co-based amorphous alloy have been investigated. When the ejection gas pressure was lower than 0.05 kgf/$\textrm{cm}^2$ at the roll speed of 55 m/s, ultrathin ribbons with the thickness less than 10 ${\mu}{\textrm}{m}$ were successfully obtained. The ribbon thickness decreased linearly with the decrease in ejection pressure. Moreover the significant decrease in ribbon width was accompanied with the decrease of thickness in the range of ejection pressure to form an ultrathin ribbon. This behavior was attributed to the decrease of effective ejection pressure in the both end-sides of rectangular nozzle due to the larger friction between molten metal and nozzle wall. The effective permeability at low frequency (1 kHz) decreased largely with the decrease in ribbon thickness, while the coercive force increased with the thickness decrease. It was considered that these behaviors were due to the enhancement of surface effect leading to the suppression of wall motion. However effective permeability at high frequency (1 MHz) increased with the decrease in ribbon thickness, and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current.

  • PDF

The Experimental Study on the Lift-off Height due to Momentum Ratio in Swirl-Coaxial Injector (2유체 동축인젝터의 공급 운동량비가 화염부상거리에 미치는 영향에 관한 실험적 연구)

  • Moon, I.Y.;Kim, Y.;Park, H.H.;Kim, S.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The experimental study on the lift-off height of diffusion flames was conducted to investigate the damage of swirl-coaxial injector used in $GO_2$/kerosene rocket engine during initial stage of ignition. To investigate the causes of damage and to prevent further damage of the injector, experimental injector was designed and hot fire tests were performed with varying propellant momentum ratio($\frac{Momentum of {GO_2}}{Momentum of Kerosene}$) from 1 to 12. In experimental coaxial injector, kerosene is sprayed from the central nozzle with swirl and $GO_2$ sprayed around the kerosene nozzle in the direction parallel to the axis of combustion chamber. Chamber pressure are close to the atmospheric condition. Lift-off height was measured by still images from camcoder and average values were used as data.

  • PDF

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

A Developement of Ultra High Pressure Injection Equipment for Study on Diesel Spray Characteristics with Ultra High Pressure (극초고압 디젤분무특성 해석을 위한 극초고압 단발분사장치의 개발)

  • 정대용;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.50-59
    • /
    • 2003
  • It was known that high pressure injection is an effective method to enhance thermal efficiency and decrease exhaust emissions in diesel engines. If injection pressure becomes ultra high, it is predicted that there may be a suitable injection pressure which the enhancement rate of spray characteristics is moderate. Also, there may be a limit injection pressure which spray characteristics is reversed and get worse. But these are unknown. To investigate a suitable injection pressure and a limit injection pressure, ultra high pressure injection equipment(UHPIE), which can realize the injection pressure of 3,200bar, was developed. UHPIE is a basic apparatus of single shot injection, and ultra high pressure was achieved by second stage rapid compression in short time. From the evaluation of UHPIE, a injection curve like a conventional diesel engine(jerk type) was realized. Also, it was proved that repetition of experiment was excellent. Therefore it was found that there was no problem to perform the study on the ultra high pressure injection with UHPIE. Consequently, the foundation of the study on ultra high pressure injection could be established.