• Title/Summary/Keyword: 분사류

Search Result 117, Processing Time 0.025 seconds

자유류와의 분사 압력비와 분출구 형상에 따른 공기 우산 효과 연구

  • Hwang, Jae-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.71-73
    • /
    • 2016
  • 기존 우산의 단점을 보완한 발명품, 공기우산이 개발되었다. 하지만 공기우산의 단점인 짧은 사용시간을 보완하기 위해 강우량에 따라 적절하게 공기 분사압을 변화시키는 것뿐만 아니라 공기우산의 사용인원의 조절을 위해 압력비와 분사구 형태에 따른 우산의 효과를 알아보는 것이 실 사용에 중요한 요소일 것이다. 이에따라 본 연구에서는 우산 앞 부분의 분출구 형상과 자유류와의 분사 압력비에 따른 자유류의 방어 능력을 확인해 보았다. 평면 분사구에서 압력비가 1.3, 1.5인 구간에서는 우산의 효과를 나타낼 수 없었고 압력비가 1.5인 구간부터 삼각형 분사구와 육각형 분사구에서 우산의 형태가 나타남을 알 수 있었다. 압력비가 2.0인 구간에서 육각형 분사구의 경우 통상적인 우산의 형상을 보이기 시작하는 것을 알 수 있다.

  • PDF

Improvement of Cooling Effects of Pylon Injector for Scramjet Combustor (스크램제트 연소기용 파일런 분사기 냉각성능 개선 연구)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.10-18
    • /
    • 2011
  • A new film cooling method to protect the pylon injector from aerodynamic heating for a scramjet combustor is proposed and verified with numerical methods. The conditions for the Mach 8 flight at an altitude of 35km are considered. Air is considered as a coolant. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model are used. A downward injection of coolant from the top of the pylon gives higher cooling effects with less mass flow rate of coolant than the upward coolant injection from bottom of the pylon. Also, the downward injection shows little flow separation due to the favorable pressure gradient and does not disturb the flowfields near pylon injector, which results in reduction of pressure losses.

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;김영석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.63-72
    • /
    • 1997
  • 본 논문은 분사제트 주위에 형성되는 와류를 조절하여 제트를 제어하기 위하여 유동가시화, 속도분포 및 난류성분을 측정하는 실험을 수행하였다. 와류를 조절하기 위한 방법으로 제트노즐 주위에 환형관을 설치하여 환형관으로부터 2차제트를 분사 또는 흡입함으로써 제트주위에 형성되는 전단류를 변화시켰다. 2차제트 분사시 주제트 주위에 형성되는 와류의 발달을 억제함으로써 제트 포텐셜코어의 길이가 아주 길어지는 제트유동을 얻을 수 있었다. 환형관으로부터 주제트주위의 유체를 흡입하는 경우 제트주위의 전단류가 흡입비 R=1.3∼l.65에서 대류불안정성에서 절대불안정성으로 바뀜으로써 형성된 와류가 하류에서 제트중심부까지 발전, 결합되는 것을 방지하여 더 긴포텐셜코어와 중심에서 낮은 난류강도를 얻었다. 위의 결과는 환형관 주위에 부착한 깃의 높이 변화에 따라서 변화하였는데, 이것은 깃이 환형관을 통한 흡입유동의 유로역할을 함으로써 제트밖으로부터 흡입되는 것을 방지할 수 있었다. 분사제트 벡터링을 위하여 제트노즐 주위의 환형관을 이등분하여 한쪽으로만 제트주위의 유동을 흡입함으로써 제트주위에 다른 전단류를 형성함과 동시에 Coanda효과를 이용하여 분사제트를 편향시켰다. 편향되는 정도 및 난류성분은 홉입속도 비에 따라서 크게 바뀌었다.

  • PDF

A study on the characteristics of fuel spray for EFI type using the ultrasonic fuel feeding system (초음파 연료 공급장치를 이용한 EFI방식의 연료분무 특성에 관한 연구)

  • 윤면근;류정인
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.16-21
    • /
    • 1994
  • 본 연구에서는 연료의 핵심기술인 분사기술을 향상시키기 위하여 연료의 고압분사와 초음파 에너지 공급기술을 이용하여 연료의 미립화를 시도하고 EFI연료 분사방식에서 초음파 공급장치를 개발하여 추후 직접 분사식 초음파 무화장치의 개발을 위한 기초를 마련하고 직접 분사식에서 문제시되어지는 분사 초기 또는 분사 말기의 분사연료 미립화의 분사 전구간에서의 분사연료의 미립화를 시도하기 위한 기초를 마련하고자 한다.

  • PDF

Characteristics of Dual Transverse Injection in Supersonic Flow Fields II-Combustion Characteristics (초음속 유동장 내 이중 수직분사의 특성에 관한 연구 II-연소특성)

  • Shin, Hun-Bum;Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.61-68
    • /
    • 2002
  • Combustion characteristics of dual transverse injection of hydrogen in supersonic air flows were studied using computational methods. Three-dimensional Navier-Stokes with a non-equilibrium chemical reaction model and the k-$\omega$ SST turbulence model were used. A parametric study was conducted with the variation of the distance between two injectors. Combustion characteristics of dual injection are very different from those of single injection. The combustion characteristics of two injection flows are very different from each other, and the ignition and combustion characteristics of the rear injection flow are strongly influenced by those of the front injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of burning rate. However, the increase of the distance over the specific distance gives no increase of burning rate but makes more losses of stagnation pressure. From the results it can be stated that there exists a distance between two injectors for optimum combustion characteristics.

Spray Structure and Cross-section Characteristics of Pulsed Liquid Jet Injected into a Cross-flow (횡단 유동장으로 펄스 분사된 액체 제트의 분무 구조 및 단면 분포 특성)

  • Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • Present studies of these experiments was conducted to using water, over a range of cross-flow velocities from 42 to 136 m/s, with injection frequencies from 35.7 to 166.2 Hz. In cross-flow field, main parameters of liquid jet for secondary breakup were cross-flow drag rather than pressure pulse frequency. As oscillation of the periodic pressure, liquid jet was moved up and down. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increasing.

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometries (분사구 형상에 따른 초음속 유동장 내 수직 연료 분사 특성)

  • Kim, Seihwan;Lee, Bok Jik;Jeung, In-Seuck;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, computational simulation was performed to investigate the characteristics of air/fuel mixing according to the shape of the injector exit when the transverse jet was injected into a supersonic flow. Non-reacting flow simulation was conducted with fixed mass flow rate and the same cross-sectional area. To validate the results, free stream Mach number and jet-to-crossflow memetum ratio are set to 3.38 and 1.4, respectively, which is same as the experimental condition. Further, separation region, structure of the under-expended jet, jet penetration height, and flammable region of hydrogen for five different injectors compared.

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

Numerical Study on Characteristics of Gas Leakage in an Underground Combined Cycle Power Plant (지하 복합발전 플랜트 내부의 가스 누출 특성에 대한 수치해석 연구)

  • Bang, Joo Won;Sung, Kun Hyuk;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.594-600
    • /
    • 2016
  • The present study numerically investigated the gas leakage characteristics in a simplified underground combined cycle power plant. The effect of obstacles near a crack location on the gas concentration in the confined space was analyzed by using the lower flammable limit (LFL) of methane gas. When the jet flow was close to the vertical walls, the longitudinal leakage distance increased by about 60% (when an obstacles was present) compared to the case without any obstacle, because these obstacles prevented transverse flows. In addition, when an air filter was installed near to the trajectory of the gas flow, the longitudinal leakage distance was similar to the distance between the crack and obstacle, whereas the transverse leakage distance increased up to 8 times compared to the case without any obstacle. As the jet flow impacts on the obstacle and changes its direction, the gas flows recirculate. Therefore, it is necessary to consider the effect of the structure and facility locations on the trajectory of the jet flow to propose an accident prevention system in confined spaces.