• Title/Summary/Keyword: 분류시스템

Search Result 6,508, Processing Time 0.033 seconds

The Review of Globally Harmonized System of Classification and Labelling of Chemicals (위험물질 분류 및 표지에 관한 세계조화시스템 고찰)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2007
  • The UN recommends to the member of OECD to implement the GHS (Globally Harmonized System of Classification and Labelling of Chemicals) that harmonized the flammable materials for classification, labelling, production, transport, storage, handling, usage and discard. There are no significant differences between UN and GHS because GHS is based on physico-chemical hazard and acute toxity of classification and labelling of UN regulation for the classification and transportation of flammable materials. In this paper it was analyzed that the classification, labelling and test method of flammable materials for GHS and the national law of safety management of flammable materials.

Compressing intent classification model for multi-agent in low-resource devices (저성능 자원에서 멀티 에이전트 운영을 위한 의도 분류 모델 경량화)

  • Yoon, Yongsun;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.45-55
    • /
    • 2022
  • Recently, large-scale language models (LPLM) have been shown state-of-the-art performances in various tasks of natural language processing including intent classification. However, fine-tuning LPLM requires much computational cost for training and inference which is not appropriate for dialog system. In this paper, we propose compressed intent classification model for multi-agent in low-resource like CPU. Our method consists of two stages. First, we trained sentence encoder from LPLM then compressed it through knowledge distillation. Second, we trained agent-specific adapter for intent classification. The results of three intent classification datasets show that our method achieved 98% of the accuracy of LPLM with only 21% size of it.

Research of IoT concept implemented severity classification system (IoT개념을 활용한 중증도 분류 시스템에 관한 연구)

  • Kim, Seungyong;Kim, Gyeongyong;Hwang, Incheol;Kim, Dongsik
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • The following research has focused and implemented on designing a system that classifies the severity of mass casualty situations across both normal and disaster levels. The system's algorithm has implemented requirements such as accuracy as well as user convenience. The developed e-Triage System has applied various severity classification algorithms implemented from IoT concepts. In order to overcome flaws of currently used severity classification systems, the e-Triage System used electronic elements including the NFC module. By using the mobile application's severity classification algorithm the system demonstrated quick and accurate assessment of patient. Four different LED lamps visualized the severity classification results and RTS scores were portrayed through FND(Flexible Numeric Display) after a two wave classification.

Image Sequence Compression based on Adaptive Classification of Interframe Difference Image Blocks (프레임간 차영상 블록의 적응분류에 의한 영상시퀀스 압축)

  • Ahn, Chul-Joon;Kong, Seong-Gon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.122-128
    • /
    • 1998
  • This paper presents compression of image sequences based on the classification of interframe difference image blocks. classification process consists of image activity classification and energy distribution classification. In the activity classification, interframe difference image blocks are classified into activity blocks and non-activity blocks using the edge detection. In the distribution classification, activity blocks are further classified into vertical blocks, horizontal blocks, and small activity blocks using the AC energy distribution features. The RBFN, trained with numerical classification results, successfully classifies difference image blocks according to image details. Image sequence compressing based on the classification of interframe difference image blocks using the RBFN shows better compression results and less training time than the classical sorting method and the MLP network.

  • PDF

A Question Type Classifier Using a Support Vector Machine (지지 벡터 기계를 이용한 질의 유형 분류기)

  • An, Young-Hun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.129-136
    • /
    • 2002
  • 고성능의 질의응답 시스템을 구현하기 위해서는 사용자의 질의 유형의 난이도에 관계없이 의도를 파악할 수 있는 질의유형 분류기가 필요하다. 본 논문에서는 문서 범주화 기법을 이용한 질의 유형 분류기를 제안한다. 본 논문에서 제안하는 질의 유형 분류기의 분류 과정은 다음과 같다. 우선, 사용자 질의에 포함된 어휘, 품사, 의미표지와 같은 다양한 정보를 이용하여 사용자 질의로부터 자질들을 추출한다. 이 과정에서 질의의 구문 특성을 반영하기 위해서 슬라이딩 윈도 기법을 이용한다. 또한, 다량의 자질들 중에서 유용한 것들만을 선택하기 위해서 카이 제곱 통계량을 이용한다. 추출된 자질들은 벡터 공간 모델로 표현되고, 문서 범주화 기법 중 하나인 지지 벡터 기계(support vector machine, SVM)는 이 정보들을 이용하여 질의 유형을 분류한다. 본 논문에서 제안하는 시스템은 질의 유형 분류 문제에지지 벡터 기계를 이용한 자동문서 범주화 기법을 도입하여 86.4%의 높은 분류 정확도를 보였다. 또한 질의 유형 분류기를 통계적 방법으로 구축함으로써 lexico-syntactic 패턴과 같은 규칙을 기술하는 수작업을 배제할 수 있으며, 응용 영역의 변화에 대해서도 안정적인 처리와 빠른 이식성을 보장한다.

  • PDF

A Priori and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 Ascender, Descender와 Serif가 사용된다. 입력 단어로부터 Ascender, Descender와 Serif가 추출되어 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 폰트 그룹, 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다 나아가, 특정 폰트에 따른 Mono-font 문자 분할기와 Mono-Font 문자 인식기로 구성되는 OCR 시스템을 구성할 수 있는 것을 가능하게 한다.

A Method of an Automatic Increment of Class Representatives for an Automatic Document Classification (자동 문서 분류를 위한 분류 주제어의 자동 증식 방법)

  • 정호석;임종태;나혜숙;민철호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.151-153
    • /
    • 2000
  • 현재의 자동 문서 분류 시스템에서는 문서분류는 지식베이스를 구축하고 전문가가 클레스의 분류 주제어를 수동 입력함으로써 이루어진다. 이것은 대단히 어렵고 번거로운 일이며 많은 시간과 노력이 소요되고 지속적으로 이루어지기 힘들다. 본 논문에서는 지식베이스와 문서의 구조적 정보, 통계적 정보, 키워드 간의 응집도를 이용하여 자동 문서 분류를 위한 분류 주제어의 자동 증식 방법을 제안한다.

  • PDF

An Efficient Classifying Recognition Algorithm of Printed and handwritten numerals (인쇄체 및 필기체 숫자의 효율적인 구분 인식 알고리즘)

  • 홍연찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.517-525
    • /
    • 1999
  • In this paper, we propose efficient total recognition system of handwritten and printed numerals for reducing the classification time. The proposed system consists of two-step neuroclassifier : Printed numerals classifier and handwritten numerals classifier. In the proposed scheme, the printed numerals classifier classifies the printed numerals rapidly with single MLP neural network by low-order feature vector and rejects handwritten numerals. The handwritten numerals classifier classifies the handwritten numerals which is rejected in printed numerals classifier with modularized cluster neural network by complex feature vector. In order to verify the performance of the proposed method,handwritten numerals database of NIST and printed numerals database which include various fonts are used in the experiments. In case of using the proposed classifier, the overall classification time was reduced by 49.1% - 65.5% in comparison of the existent handwritten classifier.

  • PDF

Distributed Business Information System Architectures (분산환경에서의 비즈니스 정보 시스템 아키텍처 분류)

  • 이혜선;이은배;고현희;박재년
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.448-450
    • /
    • 2004
  • 소프트웨어 아키텍처는 소프트웨어 시스템 구축시 설계단계의 첫번째 부분으로 소프트웨어 개발시 중요시 되고 있다. 아키텍처 설계시는 비즈니스 목표나 품질 요구사항, 도메인의 특징과 개발 환경 등 여러 가지 사항을 고려해야하고 설계된 아키텍처를 검증할 수 있어야 한다. 그러나 성숙한 아키텍처가 아닌 경우 개발하고자 하는 시스템의 아키텍처 설계나 검증이 어렵다. 따라서 본 논문에서는 비즈니스 정보시스템에서 많이 사용되고 있는 아키텍처를 도출, 분류해보고, 품질 속성 만족 여부를 분석함으로써 비즈니스 정보 시스템 구축시 아키텍처들에게 아키텍처 참조 모델을 제공하고자 한다.

  • PDF

Design of Fuzzy System with Hierarchical Classifying Structures and its Application to Time Series Prediction (계층적 분류구조의 퍼지시스템 설계 및 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2009
  • Fuzzy rules, which represent the behavior of their system, are sensitive to fuzzy clustering techniques. If the classification abilities of such clustering techniques are improved, their systems can work for the purpose more accurately because the capabilities of the fuzzy rules and parameters are enhanced by the clustering techniques. Thus, this paper proposes a new hierarchically structured clustering algorithm that can enhance the classification abilities. The proposed clustering technique consists of two clusters based on correlationship and statistical characteristics between data, which can perform classification more accurately. In addition, this paper uses difference data sets to reflect the patterns and regularities of the original data clearly, and constructs multiple fuzzy systems to consider various characteristics of the differences suitably. To verify effectiveness of the proposed techniques, this paper applies the constructed fuzzy systems to the field of time series prediction, and performs prediction for nonlinear time series examples.