이 연구의 목적은 유치의 상아질면에서 염화알루미늄 지혈제의 적용이 레진강화형 글라스아이오노머(RMGIC)의 결합에 미치는 영향을 전단결합강도, 주사전자현미경(SEM), 에너지분산형 분광분석기(EDS)를 통하여 평가하는 것이다. 36개의 유구치가 이용되었으며, 상아질이 노출되도록 시편을 제작하여 상아질 전처리과정에 따라 4개의 군으로 분류하였다. I, II, III, IV군은 각각 전처리를 하지 않은 군, 25% polyacrylic acid(PAA)를 10초간 적용한 군, 21.3% 염화알루미늄 지혈제를 1분간 적용한 군, IV군은 염화알루미늄 지혈제를 1분간 사용한 뒤 PAA를 10초간 적용한 군으로 설정하였다. 각 군당 15개의 시편에 RMGIC를 중합하여 전단결합강도를 측정하였다. 각 군당 3개의 시편을 SEM/EDS 분석하였다. II군, IV군, I군, III군 순서로 결합강도가 유의하게 높았다. SEM 촬영으로 염화알루미늄 지혈제를 적용한 군들은 도말층이 일부 제거 되었음을 확인하였다. EDS 분석결과, 염화알루미늄 지혈제 적용 후 칼슘의 감소 및 염소와 알루미늄의 증가가 확인되었고, PAA 사용후에도 증가한 염소는 감소하지 않음을 관찰하였다. 연구를 통해 염화알루미늄 지혈제는 PAA의 사용에 관계없이 상아질에서 RMGIC의 전단결합강도를 감소시키는 것을 알 수 있다.
본 논문에서는 블록화된 영상의 관심영역 가중치 비교 알고리즘과 형상특징 가중치 비교 알고리즘을 결합하여 지폐를 실시간으로 분류하는 시스템을 하드웨어로 구현하였다. 구현된 시스템은 영상획득부, 전처리 및 영상처리부로 구성되어 있다. 영상획득부는 CIS(contact image sensor)에 의해 영상이 얻어지고, A/D 변환기와 PLD에서 전처리를 한다. 영상처리부는 전처리된 영상을 제안된 알고리즘에 의해 DSP에서 수행한다. 제안한 방법은 시뮬레이션을 통해 질의영상과 비교영상간의 식별율을 높일 수 있고 오염되거나 회전, 이동된 지폐에서도 향상된 성능을 가진다. 그리고 제안 방법은 영상의 블록화 효과에 따른 계산량의 감소와 병렬처리를 할 수 있는 시스템으로 구성할 수 있어서 검색율을 높이거나 검색시간을 줄일 수 있는 장점이 있다.
이동 중 사용자에게 필요한 정보를 제공하기 위해서는 장소를 인지하는 기술이 필요하다. 본 논문에서는 건물 내에서 이동하면서 카메라에 의해 포착된 영상 정보를 분석하여 현재 장소를 파악하고 카메라 영상에 관련 정보를 증강하는 비디오 기반 실시간 장소인식 시스템을 제안한다. 영상의 전역적 특징을 이용한 기존 연구들은 장면의 부분적인 폐색이나 잡음에 민감하고, 물체인식을 행하는 지역적 특징 의존 방식은 계산량이 많아 실시간 적용이 어렵다. 또한, 그러한 특징들로부터 장소인식 결과를 도출하기 위해서는 통계적 그래프 기반 모델이나 베이시안 네트웍등이 이용되어 왔는데, 전자의 경우 장소 이동의 확률을 얻기 위한 많은 통계 데이타가 필요하며, 후자는 장소 이동문맥을 활용하지 못하므로 물체 인식 결과에만 의존하는 단점이 있다. 본 논문에서는 장소 문맥 정보를 활용하면서 영상의 지역적, 전역적 특징추출법의 결합을 통해 부분 폐색 및 잡음에 대한 전역적 방법의 민감성을 보완하고, 지역적 방법의 느린 처리속도를 보완한 시스템을 제안한다. 제안된 방법을 건물 내부를 이동하면서 장소에 대한 정보를 얻는 정보증강 시스템에 적용하여 실시간 성능을 확인하였다.
본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.
본 연구는 분석과 종합에 대한 역사적 출발이라고 볼 수 있는 유클리드의 저작인 '자료론'과 '분할론'에 대한 분석 연구이다. Euclid의 원론에 비해 거의 관심이 없는 두 문헌에 대한 분석을 통해 사고활동으로서의 분석 및 종합에 대한 의미를 살펴보았다. 먼저 분석, 종합이 포함된 다양한 용어들에 대한 개념을 살펴보고, 이를 바탕으로 본 연구에서 사용한 분석과 종합의 개념을 명확화하였다. 또한 두 문헌에 제시된 명제에 대한 분석을 통해 분석은 '외재적 분석'과 '내재적 분석'으로 분류하였는데, 외재적 분석은 제시된 명제에 자체에서 외형적으로 드러난 수학적 대상, 요소, 성질, 속성에 대한 분석이고, 내재적 분석은 외재적 분석의 결과로 추출된 수학적 대상, 요소, 성질, 속성에 대한 재분석 혹은 결합 및 관련성의 추출을 통한 분석이다. 종합은 '이론적 종합'과 '경험적 종합'으로 분류하였는데, 이론적 종합은 경험보다는 논리적, 이성적 과정을 통한 새로운 대상의 추출이고, 경험적 종합은 과거의 학습 경험과 이에 대한 활용을 통한 대상의 추출이다. 이러한 분류를 기초로 하여 초등학교 교과서에 제시된 문제를 통해 실제 적용하여 탐색하였다.
최근 영상 콘텐츠의 확산에 따라 기존 콘텐츠들이 동영상으로 전환되고 있으며, 새로운 플랫폼들의 등장으로 인해 영상 콘텐츠 생태계의 성장은 가속화되고 있다. 이처럼 가속화된 성장은 전문가의 영역으로 분류되던 동영상 제작 및 편집 기술들을 일반인들 또한 쉽게 접하고 이용할 수 있도록 기술의 보편화 과정에 큰 영향을 미치고 있다. 이러한 기술들의 발전으로 인해 사람의 수작업을 통해서만 영상을 녹화하고 조절하던 과정들을 객체 추적 기술에 기반하여 자동으로 촬영하고자 하는 객체를 찾아 화면의 정중앙에 위치시켜 영상을 녹화하는 자동화 과정이 가능하게 되었다. 하지만 추적하고자 하는 객체를 지정하는 일은 아직까지 사람의 수작업을 요구하며 객체를 지정하는 수작업 과정에서 지연이나 객체 지정에 실수가 발생할 수도 있다. 이에 따라, 본 연구에서는 Haar Cascade Classifier를 활용한 얼굴 탐지기법과 CMT 객체 추적 알고리즘을 결합한 새로운 객체 추적 기법을 제안한다. 제안된 시스템은 스마트폰에서 실시간 연속적인 객체추적을 위한 효율적이고 강인한 영상추적 시스템에 잘 응용될 수 있다.
본 논문에서는 파킨슨 병 진단 및 바이오 표지자 검출을 위한 극한 기계학습을 결합하는 새로운 균형 표본 유전 알고리즘(SBGA-ELM)을 제안하였다. 접근법은 정확한 파킨슨 병 진단 및 바이오 표지자 검출을 위해 공개 파킨슨 병 데이터베이스로부터 22,283개의 유전자의 발현 데이터를 사용하며 다음의 두 가지 주요 단계를 포함하였다 : 1. 특징(유전자) 선택과 2. 분류단계이다. 특징 선택 단계에서는 제안된 균형 표본 유전 알고리즘에 기반하고 파킨스병 데이터베이스(ParkDB)의 유전자 발현 데이터를 위해 고안되었다. 제안된 제안 된 SBGA는 추가적 분석을 위해 ParkDB에서 활용 가능한 22,283개의 유전자 중에서 강인한 서브셋을 찾는다. 특징분류 단계에서는 정확한 파킨슨 병 진단을 위해 선택된 유전자 세트가 극한 기계학습의 훈련에 사용된다. 발견 된 강인한 유전자 서브세트는 안정된 일반화 성능으로 파킨슨 병 진단을 할 수 있는 ELM 분류기를 생성하게 된다. 제안된 연구에서 강인한 유전자 서브셋은 파킨슨병을 관장할 것으로 예측되는 24개의 바이오 표지자를 발견하는 데도 사용된다. 논문을 통해 발견된 강인 유전자 하위 집합은 SVM이나 PBL-McRBFN과 같은 기존의 파킨슨 병 진단 방법들을 통해 검증되었다. 실시된 두 가지 방법(SVM과 PBL-McRBFN)에 대해 모두 최대 일반화 성능을 나타내었다.
오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.
복합 레진은 중합되는 동안 수축으로 인한 응력이 발생하게 되고 이는 결합력 실패를 야기한다. 치질과의 결합력은 접착면의 성질에 영향을 받게 되는데 대부분의 연구들은 편평한 접착면상에서 이루어졌으며 와동내 와벽 위치에 따른 결합력 차이에 관한 연구는 미미한 실정이다. 이에 본 연구에서는 Ⅰ급 복합레진 수복시 단일 충전한 경우와 적층 충전한 경우에 있어서 와동의 치수벽과 측벽에서의 결합력 차이를 알아보고자 하였다. 발거된 20개의 건전한 제3 대구치를 대상으로 6 ${\times}$4 ${\times}$3 mm 크기의 박스 형태로 와동을 형성한 후 레진 충전방법과 와동벽에 따라 4개 군으로 분류하였다. 단일 충전하고 치수벽의 결합력을 측정한 A군, 단일 충전하고 측벽의 결합력을 측정한 B군, 적층 충전하고 치수벽의 결합력을 측정한 C군, 적층 충전하고 측벽의 결합력을 측정한 D군으로 설정하였다. 제조사의 지시에 따라 Clearfil SE $bond^{(R)}$(Kuraray Corp., Osaka, Japan)로 치면 처리한 후 Filteck Z $250^{(R)}$(3M/ESPE., St. Paul, USA)을 사용하여 와동을 충전하였다. 적층 충전군의 경우 1.5 mm씩 두 번에 나누어 충전하고 각각 40초씩 중합하였다. $37^{\circ}C$의 증류수에서 24시간 보관 후 교합면쪽 법랑질을 제거하고 수복물의 근원심 폭의 절반되는 지점에서 협설 방향으로 치아를 잘랐다. 주수하에 고속 diamond saw를 사용하여 각 치아의 접착면에 수직으로 1 ${\times}$1 ${\times}$7 mm의 막대 형태의 시편을 만들었으며 만능시험기에 부착하고 1 mm/min의 속도로 미세인장 결합강도를 측정하였다. 2-way ANOVA test와 t-test를 이용하여 95% 유의수준으로 통계 분석한 결과는 다음과 같다. 1. 충전 방법의 경우, 적층 충전군이 단일 충전군보다 높은 평균값을 보였으나 통계적 유의성은 없었다. 2. 와동벽에 따른 결합력 차이의 경우, 치수벽 군이 측벽 군보다 결합력이 큰 것으로 나타났으나 유의성은 없었다. 본 연구 결과만을 토대로 볼 때, 충전 방법과 와동벽의 두 가지 요소가 치질과의 결합력에 미치는 영향이 크지 않았다.
목적: 본 연구의 목적은 비스 아크릴 복합 레진의 수리 시 지연시간, 표면처리, 수리재료가 미치는 영향을 전단 결합강도 비교를 통해 알아보고, 폴리메틸 메타크릴레이트 레진을 이용한 비스 아크릴 복합 레진 수리의 효용성을 평가하고자 하는 것이다. 연구 재료 및 방법: 총 90개의 비스 아크릴 복합 레진 시편을 제작하였고, 지연시간, 표면처리, 수리재료에 따라 10개씩 9개의 실험군으로 분류하였다. 각각의 시편들은 제작 직후 만능시험기를 사용하여 전단 결합강도를 측정하였고, 통계분석 프로그램(IBM SPSS statistics 20)을 이용하여 분석하였다. 전단 결합강도 측정 후 시편의 파절 단면을 관찰하였다. 결과: 시편 제작 직후, 접착제(bonding agent)를 이용하여 광중합형 유동성 복합 레진을 접착한 실험군에서 가장 높은 전단 결합강도를 보였다($17.54{\pm}3.14MPa$). 결론: 비스 아크릴 복합 레진을 수리할 때 경과시간에 따라 재제작 여부를 고려해야 하며, 효과적인 수리를 위해 사용부위나 목적에 따라 알맞은 재료와 표면처리 방법을 고려하는 것이 바람직할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.