• Title/Summary/Keyword: 북극해

Search Result 124, Processing Time 0.029 seconds

극지 운항 선박을 위한 항로 계획 방법 연구

  • Lee, Hye-Won;No, Myeong-Il;Lee, Jun-Beom;Kim, Gi-Su;Gang, Guk-Jin;Jeong, Seong-Yeop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.181-182
    • /
    • 2018
  • 지속되는 지구 온난화 현상으로 인해 해빙 속도가 가속화되면서, 북극 항로 활용의 필요성이 증가하고 있다. 본 연구에서는 북극해의 지형과 해빙 상태를 모두 고려한 최적 북극 항로 계획 방법을 제안하였다. 먼저, 연료 소모량을 최소화하는 항로를 탐색하기 위해 북극 항로 계획을 각종 지표를 전산화한 최적화 문제로 정식화하였다. 또한, 해빙을 고려하기 위해 POLARIS 규정을 고려한 선박의 운항 제약 조건을 추가하였다. 제안된 방법을 이용해 최적 북극 항로를 탐색한 결과, 안전하고 경제적인 항로를 도출할 수 있음을 확인하였다.

  • PDF

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection (북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구)

  • Kim, Yunjee;Kim, Duk-jin;Kwon, Ui-Jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1273-1282
    • /
    • 2018
  • Recently, active research on the Arctic Ocean has been conducted due to the influence of global warming and new Arctic ship route. Although previous studies already calculated quantitative extent of sea ice using passive microwave radiometers, melting at the edge of sea ice and surface roughness were hardly considered due to low spatial resolution. Since Sentienl-1A/B data in Extended Wide (EW) mode are being distributed as free of charge and bulk data for Arctic sea can be generated during a short period, the entire Arctic sea ice data can be covered in high spatial resolution by mosaicking bulk data. However, Sentinel-1A/B data in EW mode, especially in HV polarization, needs significant radiometric correction for further classification. Thus, in this study, we developed algorithms that can correct thermal noise and scalloping effects, and confirmed that Arctic sea ice and open-water were well classified using the corrected dual-polarization SAR data.

북극해 항로 검토를 위한 북극해빙 모니터링

  • Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.21-22
    • /
    • 2009
  • 북극의 환경은 전 지구적으로 환경변화에 민감하다. 그중 해빙의 증가 및 감소는 지구의 온난화 진행의 지표로 작용을 한다. 본 연구에서는, 수동 마이크로파 센서인 AMSR-E를 이용하여 북극을 중심으로 북위 $60^{\circ}$ 이내의 지역에서 2002년$\sim$2009년 동안의 북극해빙 면적에 관한 데이터를 획득하고 북극 해빙 전체면적의 증가 및 감소에 관한 변화를 관측하였다. 추가로, 고해상도인 합성개구레이더를 이용하여 북극 다산기지 주변 해역에 대해 얻어진 데이터의 결과에 대해 고찰한다. 구체적인 연구 내용은 다음과 같다. 1. 북극 해빙 면적의 연변동 조사, 2. 북극 해역별 해빙 분포 특성, 3. 해빙 변동 특성 해석, 4. 향후, 활용 방향 소개: 온난화에 따른 북극 기후 변화, 북극 자원탐사 및 항로 개발 적용 방안, 5. SAR의 주파수별, 편파별 해빙 산란 특성 기초 조사 및 향후 활용 방향, 6. 북극 현장 관측 프로그램 소개.

  • PDF

The Return of Great Power Competition to the Arctic (북극해 일대에서 본격화되기 시작한 강대국 경쟁)

  • Hong, Kyu-dok;Song, Seongjong;Kwon, Tae-hwan;JUNG, Jaeho
    • Maritime Security
    • /
    • v.2 no.1
    • /
    • pp.151-184
    • /
    • 2021
  • Global warming due to climate change is one of the biggest challenges in the 21st century. Global warming is not only a disaster that threatens the global ecosystem but also an opportunity to reduce logistics costs and develop mineral resources by commercializing Arctic routes. The Arctic paradox, in which ecological and environmental threats and new economic opportunities coexist, is expected to have a profound impact on the global environment. As the glaciers disappear, routes through the Arctic Ocean without passing through the Suez and Panama Canals emerged as the 'third route.' This can reduce the distance of existing routes by 30%. Global warming has also brought about changes in the geopolitical paradigm. As Arctic ice begins to melt, the Arctic is no longer a 'constant' but is emerging as the largest geopolitical 'variable' in the 21st century. Accordingly, the Arctic, which was recognized as a 'space of peace and cooperation' in the post-Cold War era, is now facing a new strategic environment in which military and security aspects are emphasized. After the Cold War, the Arctic used to be a place for cooperation centered on environmental protection, but it is once again changing into a stage of competition and confrontation between superpowers, heralding 'Cold War 2.0.' The purpose of this study is to evaluate the strategic value of the Arctic Ocean from geopolitical and geoeconomic perspectives and derive strategic implications by analyzing the dynamics of the New Cold War taking place in the Arctic region.

  • PDF

북극해항로 해상운송 현황 및 당면과제

  • Hong, Seong-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.135-137
    • /
    • 2015
  • 본 논문에서는 북극해항로(NSR)의 운항여건, 현황 및 기간별 운항내용에 대한 평가가 다뤄진다. 한국 관련 NSR 운항내용이 상세히 설명되며, 특히 2014년-15년, 서방의 대러시아제재여파 및 국제유가하락 등에 따른 NSR 국제통과수송 급락 배경 분석이 이뤄진다. 또한 현재 주요 국가들의 NSR에 대한 관점이 소개되며, 향후 NSR의 지속 활용을 위한 선사, 정부, 지자체 등 주요 주체들의 당면과제와 방안이 제시된다.

  • PDF

A study on the northern sea route safety convoy using ship handling simulation (선박조종시뮬레이션을 이용한 북극해 안전 호송에 관한 연구)

  • Kim, Won-Ouk;Kim, Jong-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.847-851
    • /
    • 2016
  • Due to global warming it is estimated that the arctic ocean route will be avaliable and traffic will increase by approximately year 2030. However, most navigation in the arctic is based on the ice breaker captains'orders, there is no exact measurement of convoy speed and distance between ships. So, this research was conducted to find out the minimum safe separation distance and minimum breaking distance via ship controling simulations, and the results are as stated. For breaking distances, for ships that have a lead distance which is 2~4 times the width of the ship and traveling less than 7 knots, crash astern and crash astern & hard rudder showed no significant difference. But ships traveling at 10 knots there was a decrease in breaking distance of 1L, from 3.5L to 2.5L. By analyzing 10 subject ships by crash astern the breaking distance for 5 knots is 0.98L~1.8L, for 8 knots is 1.9L~4.0L. The minimum safe separation distance in narrow sea-ways is 6L, but as the arctic sea-way is only one-way 3L is required. As the result, it is found that in the arctic the safe escort speed is less than 5 knots, if the escort speed is 8knots or more and by using crash astern & hard rudder to break the safe distance should be kept at 3.4L.