• Title/Summary/Keyword: 볼트축력

Search Result 72, Processing Time 0.024 seconds

Estimation of Long Term Clamping Force of High Strength Bolts By Coating Thickness Parameters of Slip Faying Surfaces (미끄럼 표면 도막두께변수에 따른 고력볼트 장기축력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • The initial clamping forces of high strength bolts depending on different faying surface conditions drop within 1,000 hours regardless of loading, any other external force or loosening of the nut. This study is focused on an expectation model for relaxation of high strength bolt, which is confined to creep on coated faying surfaces after initial clamping. The range of this experiment is limited to estimate the relaxation of bolted joints coated by inorganic zinc primer. The candidate bolts were dacro-coated tension control bolts. The parameters of coated thickness for the faying surface were 96, 168,and $226{\mu}m$ respectively. From experiments, it exhibited that the logarithmic function for creep strain was derived due to the parameter of coating thickness. By using the creep strain, subsequently the quantitative model for estimating long term relaxation of high strength bolt can be taken with the elapsed time. The experimental results showed that the relaxation after the initial clamping of high strength bolt rose to a much higher range from 10% to 18% due to creep of the coating as the coating thickness was increased. This study showed that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force of high strength bolt.

Evaluation on the Behavior of Slip Critical Joints with TS High Strength Bolts Subjected to a Size of Bolt Holes (볼트 구멍 크기에 따른 TS 고력볼트 접합부 거동 평가)

  • Lee, Hyeon Ju;Kim, Kang Seok;Nah, Hwan Seon;Lee, Kang Min;Kim, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2011
  • The oversized and slotted holes are frequently required for the built-up in construction sites. The foreign provisions specify the reduction of the slip load subjected to the size of bolt holes and the direction of load. There are no domestic building codes and researches on the bolt holes. Therefore, it is necessary to evaluate a change of joint strength quantitatively according to the bolt-hole size and surface condition by means of experiment. This study was conducted to evaluate the slip load subjected to the size of bolt holes, and measured on a change of clamping force of high strength bolts during 168 and 800 hours to analyze the trend of relaxation after fastening bolts. Torque shear bolts defined on KS B 2819 was used for the specimen. Test results exhibit that the variation on the slip load of the others was below 10% by contrast with the standard hole and the highest rate of relaxation was 2.66% of the initial clamping force at the case of the long-slotted hole of 2.5D.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF

A Study on Constitution of Plant Safety Inspection System for Measuring Joint Axial Force of High Tension Bolt (고장력 볼트의 체결축력 측정을 위한 설비 안전 검사 시스템 구축에 관한 연구)

  • Kim, J.Y.;Park, S.G.;Kim, H.S.;Kim, C.H.;You, S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.371-377
    • /
    • 1995
  • By using ultrasonic waves, we obtained conclusion from the experiment for measuring joint axial force of high tension bolt. The conclusion is followed. : From the high tension bolts used at turbine of Thermoelectric Power Plant, we obtained the equation of calculating joint axial force that is ${\sigma}=\frac{{\Delta}BPD}{j{\times}{\Sigma}{\delta}}$. By using IBM PC, which is inputed by the equation for calculating joint axial force of high tension bolts, we got joint axial force of high tension bolts form beam path of ultrasonic waves. Furrther, we can identify that constitution of plant safety inspection system is possible.

  • PDF

Fatigue Performance Evaluation of High-strength Bolt Used for Marine Transport Plant Structures (해상 운송 플랜트 구조물의 고장력 볼트 피로성능 평가)

  • So, Jaehyuk;Oh, Keunyeong;Park, Kwansik;Kim, Sun woo;Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • The offshore plant structure has been transported to the site by barge because it is hard to manufacture in site. When the structure was transported on the sea, offshore plant structures and connection were experienced repetitive submarine load. For this reason, it was known for that the axial force of high-strength bolted connection was declined. Therefore, in this study, high-strength bolted connection was evaluated the shear fatigue performance under longtime fatigue load during marine transport. The experimental variables were selected intial axial force, surface type, and bolt type because they ar important factors in the change of axial force of bolts. As a experimental results of considering various variables, the variation of axial force showed within 1%. Therefore, the high-strength bolted connection was verified structural safety under longtime fatigue load.

Time Dependent Reduction of Clamping Forces of High Strength Bolt F13T (시간에 따른 F13T 고장력 볼트의 체결력 감소)

  • Jo, Jae Byung;Seong, Taek-Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.291-297
    • /
    • 2009
  • Relaxation of high strength bolts was investigated. Block type and splice type specimens were fabricated with different types of bolts and different clamping lengths. Bolts were tightened to the specified torque. Clamping forces were measured through strain gauges installed on the shafts of bolts, while specimens were kept in a constant temperature and humidity. In all cases, ratio of clamping force reduction is less than 10%. Test results of different types of specimens and bolts and different clamping lengths were compared each other by using a simple model, which is suggested in this study for the estimation of bolt relaxation. The suggested model shows reasonably good agreements with test results for all cases. No difference is found between F13T and F10T bolts, but Dacro coated bolts shows higher relaxation than black bolts by approx. 30%. And also the comparison of test results shows that ratios of bolt relaxation become larger as clamping lengths of bolt shorter and the number of faying surfaces greater.

Comparative Analysis of Bolt Torque Calculation Methods for Space Applications (우주산업용 볼트토크 계산법에 대한 비교 및 실험적 검증)

  • Seo, Ji-Hwan;Kim, Sun-Won;Kim, Chang-Ho;Jun, Hyuoung-Yoll;Jeong, Gyu;Lim, Jae Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.68-75
    • /
    • 2017
  • In this study, the bolt torque calculation method for space industry was compared and verified experimentally. Currently, NASA, European Aerospace Agency, and US National Defense Standards are proposing standards for bolt torque estimation. However, these standards vary slightly and require a high level of comprehension. To address these challenges, we selected typical equations among the widely-used bolt torque calculation methodologies, and the predicted values were verified via clamping force test. In addition, we examined the changes in clamping force associated with handling and refastening.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

Simplified Finite Element Model of an Anchor Bolt Inserted Through Concretes Considering Clamping Forces (체결력을 고려한 콘크리트 삽입 앵커볼트의 간편 유한요소 모델)

  • Noh, Myung Hyun;Lee, Sang Youl;Park, Kyu Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • In this study we proposed a simplified finite element model of anchor bolt system inserted through concrete structures considering clamping forces. The three different finite element types using LS-DYNA are applied for numerical efficiency of the anchor bolt modeling. Combined beam and solid elements are used to reflect the tension state at internal part of anchor bolt due to torques. The clamping forces due to torques are considered by introducing a compression for a nut plane modeled by beam elements. The numerical examples show good agreement with different element types. Parametric studies are focused on the various effects of different element types on the induced axial and shear forces of anchor bolts considering clamping forces.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF