• Title/Summary/Keyword: 복합 재료 판

Search Result 537, Processing Time 0.032 seconds

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Application of Saint-Venant's Principle to Anisotropic Beams (이방성 보 구조물 응력해석에서의 생브낭 원리)

  • Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.451-455
    • /
    • 2012
  • Asymptotic analysis is a powerful tool for the mathematically rigorous design and analysis of anisotropic beam structures. However, it has a limitation in that the asymptotic approach requires asymptotically correct boundary conditions for higher-order solutions, which are often needed for beams weak in shear. A method utilizing Saint-Venant's principle was proposed in a previous work to improve the stress state of isotropic beams and plates. In this paper, such a method is generalized for anisotropic beams, so that one does not need to consider the asymptotically correct boundary conditions for higher-order solutions. Consequently, solving the recursive system equations is not necessary, which makes the method very efficient in terms of accuracy and computational effort.

Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage (Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가)

  • Kang, Min-Sung;Choi, Jung-Hun;Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

Experiments on Vibration Control of Laminated Shell Structure with Piezoelectric Material (압전 재료를 이용한 셸형 복합적층판의 진동제어에 대한 실험)

  • 황우석;고성현;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.153-156
    • /
    • 2003
  • Many researchers have tried to develop the piezoelectric shell element and verified them with the benchmarking problem of the piezoelectric bimorph beam since there is no experimental result for the control of shell structure with piezoelectric sensor/actuator. In this paper, the experiments are designed and performed to verify the control Performance of piezoelectric sensor/actuator on the shell structure. PVDF is easy to be attached on the surface of a shell structure but makes weak control forces. On the contrary, PZT makes control forces large enough to control the structure, but it is not easy to make a PZT element with curvature. To use PVDF as an actuator, the structure should be designed as flexible as possible and the voltage amplifier could make high control voltage. PVDF actuator powered by a voltage amplifier that generates output voltage from -200 to +200 volts, shows little control performance to control the vibration of an arch type shell structure. The performance of sensor looks good and the negative velocity feedback control works perfectly. The actuator voltage seems to be too small to verify the control effect Quantitatively. An experiment with high voltage amplifier is scheduled to verify the control effect Quantitatively.

  • PDF

Fabrication of PLA/TiO2 nanofibers using melt-electro-spinning (용융전기방사를 이용한 PLA/TiO2 나노섬유의 개발)

  • Hwang, Ji-Young;Kim, Hui-Jin;Park, No-Hyung;Huh, Hoon;Park, Choon-Keun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.124-128
    • /
    • 2011
  • Electrospun webs have been widely investigated for applying to drug delivery system (DDS) because of their high specific surface area and high porosity. In this study, the composite webs of PLA (poly(lactic acid)) and $TiO_2$ were fabricated by melt-electro-spinning method for applying to drug delivery system. The morphologies of PLA/$TiO_2$, webs were observed using scanning electron microscope (SEM) and field emission transmission electron microscope (FE-TEM). The crystal structures of PLA/$TiO_2$ composite webs were confirmed by X-ray diffractometer (XRD).

Design of Pultruded I-shape FRP Compression Member (펄트루젼 I형 FRP 압축재의 설계)

  • Joo, Hyung-Joong;Lee, Seung-Sik;Yi, Jong-Seok;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.46-53
    • /
    • 2012
  • Using pultrusion process, FRP composite structural members having various cross-section shapes can be produced with unlimited lengths. Because of such reasons, these members are suitable for the application in the construction field. Especially, this material is highly appreciated if the material is to be used in the corrosive environments such as aquatic or oceanic environments due to its high corrosion resistance. However, design criteria for the FRP structural member are not developed yet. So, the research on the development of design guideline is needed ungently. In order to use the pultruded structural FRP member efficiently, the members are composed of thin plate components, and thus, the member is prone to buckle easily and the buckling is one of the governing strength limit states for the design. In this paper, we present the analytical study results pertaining to the buckling behavior of I-shape FRP compression member. In addition, design procedure and flow-chart are also proposed based on the study results including previous experimental results. Proposed design procedure is similar to that in ANSI/AISC 360-10 with minor modification. Therefore, it is convinced that the structural design of pultruded FRP compression member could be done easily by following design procedure proposed in this paper.

Development of Low-Velocity Impact Analysis Model of Carbon-Steel Laminates through Finite Element Analysis (유한요소해석을 통한 탄소섬유-연강 적층판의 저속 충격 해석 모델 개발)

  • Park, Byung-Jin;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.215-220
    • /
    • 2018
  • In this study, finite element analysis of Carbon-Steel Laminates with different layup pattern was conducted to verify similarity to the results of previous studies and to develop the effective model for low-velocity impact analysis. As in the experiment, Finite element analysis of the Fiber metal laminates (FMLs) with five different lamination patterns was carried out, and the impact resistance of the FMLs was confirmed by comparing the energy absorption ratio. The FMLs showed the higher energy absorption ratio than the mild steel having the same thickness, and it was confirmed that all the FMLs had the high energy absorption ratio over than 96%. In addition, the low-velocity impact analysis model proposed in this study can be effectively used to study composite forms and automotive structures.

Characteristic Analysis of Falling Weight Impact Response in CF/Epoxy Composite Plates Using Frequency Responses (주파수 응답을 이용한 CF/Epoxy 복합적층판의 낙추충격 특성평가)

  • 임광희;박노식;김영남;김선규;양인영
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • We have implemented a system of falling weight impact tester in order to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates. The absorbed energy of T-300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T-300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen however there was no big difference in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses were evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.