• Title/Summary/Keyword: 복합 링크기구

Search Result 7, Processing Time 0.021 seconds

Design of kitchen cabinet using complex link mechanism (복합 링크기구를 이용한 주방 상부장 설계)

  • Geon-Hyeok Lim;Kibum Shim;Hoon Shim;Jiwon Jang;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • Kitchen cabinets are essential furniture for storing the kitchen tools, but their high installed location makes it difficult for users to access the upper of the cabinets. Therefore, in this paper, we propose a new type of kitchen cabinet that allows users to easily take out or store items by adding new height adjustment features while maintaining the function of the existing cabinet. For convenience and safety, an appropriate complex link mechanism is designed so that the selected floor, not the entire cabinet, can come down to a desired height with one operation. Moreover, the optimal descent path is set to prevent the floor tilting or interfloor interference during descent, and appropriate link shapes, lengths, and joint types are selected to implement it. FEA analysis is performed to ensure that the stretched complex linkage can support the load of the stored items and the feasibility of the height adjustable kitchen cabinet is verified through fabrication.

Design of lift-down kitchen cabinet for elderly and disabled (고령자 및 장애인을 위한 승강형 주방 상부장 설계)

  • Kibum Shim;Hoon Shim;Geon-Hyeok Lim;Jiwon Jang;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.465-470
    • /
    • 2024
  • Kitchen cabinets are widely used for their spacious storage and efficient use of space, but their high installed location makes it difficult for the elderly and disabled to access. Therefore, in this paper, we propose a new height-adjustable kitchen cabinet that can be used more easily and safely. The lift-down range of cabinet was set considering the installation location of cabinet for efficient use of kitchen space and the maximum height accessible to the elderly and disabled, and the link geometry and driving method of the complex link mechanism were determined through the mechanism design procedure to ensure that the selected floor come down safely along the optimal descend path. In addition, the appropriate motor and control algorithm were added to allow the user to descend to the desired height with a simple button operation. It was confirmed through actual production that the proposed linkage mechanism performs the desired lift-down motion.

A study on the toilet lifting seat for the elderly (노약자를 위한 변기 리프팅 시트 연구)

  • Minseo Kim;Hyemin Son;Jinho Cho;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.459-464
    • /
    • 2024
  • The purpose of this study is to design a toilet lifting seat to prevent falls accidents in the elderly while using the toilet. Prior to design, laws and national standards related to restroom use were investigated and the available space for the assistive devices to be installed was determined. In additions, considering the body size and operating range of the elderly, the optimal final position of the toilet seat is set so that users can use it more safely and conveniently without external help. Moreover, in order to provide an effective standing assistance function, a complex 4-bar link structure was applied to enable simultaneous seat elevation and angle adjustment when operating the device, and the appropriate link shape and dimensions were determined using a linkage program and UG NX. FEA analysis using ANSYS Workbench is performed to ensure the robustness of the stretched linkage and the feasibility of the lifting seat is verified through fabrication.

Development of Modulated Planar Cam-Linkage Mechanism Design Software (평면 캠-링크 복합 기구용 설계 소프트웨어 개발)

  • Yang, Hyun-Ik;Yu, Ho-Yune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.125-131
    • /
    • 1999
  • For linkage mechanisms driven by a cam, cam profile is the major design factor and is determined by the cam follower motion. If a cam mechanism has additional kinematic linkage besides cam and follower then the follower motion should be specified from the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a result, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

Multi-legged Walking Robot Using Complex Linkage Structure (복합 링크기구를 이용한 다족 보행로봇)

  • Im, Sang-Hyun;Lee, Dong Hoon;Kang, Hyun Chang;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.