• Title/Summary/Keyword: 복합헬리콥터

Search Result 67, Processing Time 0.026 seconds

Fatigue and Damage Tolerance Evaluation of Composite Helicopter Rotor Blades (복합재 헬리콥터 로터 블레이드의 피로 및 손상허용 평가 방안)

  • Kee, Young-Jung;Paek, Seung Kil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • Fatigue evaluations for the rotor blades of commercial or military rotorcraft have been carried out using the safe life concept since 1950s. Particularly, in the case of a rotor blade made of a composite material, a highly reliable fatigue life could be predicted by evaluation the cumulative damage using combination of fatigue life curve and load spectrum. However, there is a limit in adequately evaluating the strength reducing phenomena caused by damages or defects generated during the manufacturing process or impact damage induced by operational usages, using only the safe life concept. In this study, the fatigue evaluation process based on the damage tolerance concept is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.217-228
    • /
    • 2004
  • This paper presents the rotating test techniques and the results of the roating test of the small-scaled hingeless rotor system with composite paddle blades in hover and forward flight conditions. The small-scaled rotor system was designed using froude-scaled properties of full scale rotor system. Metal flexures and composite flexures were made as hub flexures by the same dynamic properties of rotor system. The rotating tests of hingeless rotor system installed in GSRTS at KARI were carried out to get lead-lag damping ratios and aerodynamic loads of the hingeless rotor system. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. 6-components balance was installed between hub and main shaft and straingauges on blades were instrumented for the measurements of aerodynamic loads of rotor system. Tests were performed on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively.

  • PDF

A Study on Experimental Test of a Small Scale Hingeless Rotor (축소형 무힌지 로터 시험에 관한 연구)

  • Kim, Joune-Ho;Song, Keun-Woong;Joo, Gene;Suk, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1599-1606
    • /
    • 2011
  • It is possible to study the load characteristics of full-scale hingeless rotor with the changing of physical smallscaled configurations such as rectangular and paddle blades, and metal and composite hubs. In this study, a static test, and a ground and wind-tunnel test were carried out using small-scale rotor models. The static test was carried out to confirm structural stiffness, characteristics of inertia, natural frequency, and damping ratio of rotors, and the ground and wind-tunnel test was carried out to confirm the stability and aerodynamic characteristics under hovering and forward flight conditions. According to the test results, the vertical load in the case of a combination of a small composite hub with paddle blades was higher than that in the case of a metal hub with paddle blades at same condition. Further, it was confirmed that the restraint of the combination of composite hub can be more flexible than the metal hub for the motion of paddle blades.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.

High Cycle Fatigue Life Evaluation of Damaged Composite Rotor Blades (손상된 복합재 로터 블레이드의 고주기 피로수명 평가)

  • Kee, Young-Jung;Kim, Seung-Ho;Han, Jeong-Ho;Jung, Jae-Kwon;Heo, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1275-1282
    • /
    • 2012
  • Helicopter rotor systems are dynamically loaded structures with many composite components such as the main and the tail rotor blades. The fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. The safe-life methodology has generally been used in the helicopter industry to substantiate dynamically loaded composite components. However, it cannot be used to evaluate the strength reducing effects of flaws and defects that may occur during manufacturing and operational usage. The damage tolerance methodology provides a proper means to overcome this shortcoming; however, it is difficult to economically apply it to every composite component. The flaw tolerant methodology is an equivalent option to the damage tolerance methodology for civil and military rotorcraft. In this study, the flaw tolerant safe-life evaluation is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

Hingeless Blade Flexure Bending Stiffness Reinforcement for Whirl Tower Test (훨타워 시험 수행을 위한 무힌지 블레이드 플렉셔 굽힘 강성 보강)

  • Kim, Taejoo;Kee, Youngjoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.390-397
    • /
    • 2014
  • BO-105 helicopter applies hingeless rotor hub system and blade root uses a flexure of hingeless rotor hub system. So bending stiffness reinforcement for flexure was conducted for preparation of whirl tower test using BO-105 blade. Bending moment of flexure area was calculated with FE modeling of section shape for stiffness reinforcement of flexure and thickness of composite material for reinforcement was chosen. Flexure bending stiffness reinforcement was conducted and bending stiffness measurement test was performed before and after bending stiffness reinforcement. And the test data are compared with analysis results.

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF