• Title/Summary/Keyword: 복합재료 주축

Search Result 14, Processing Time 0.022 seconds

Design of High Speed Composite Air Spindle System (초고속 복합재료 공기정압 주축의 설계)

  • 장승환;이대길;한흥삼
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to enhance high speed stability the composite air spindle system composed of a high modulus carbon fiber composite shaft, powder contained epoxy composite squirrel cage rotor and aluminum tool holder was designed and manufactured. For the optimal design of the composite air spindle system, the stacking sequence and thickness of the composite shaft were selected by considering the fundamental natural frequency and deformation of the system. The analysis gave results that the composite air spindle system had 36% higher natural frequency relative to a conventional air spindle system. The dynamic characteristics of the composite spindle system were compared with those of a conventional steel air spindle system. From the calculated and test results, it was concluded that the composite shaft and the power contained composite rotor were able to enhance the dynamic characteristics of the spindle system effectively due to the low inertia and high speific stiffness of the composite materials.

  • PDF

Thermal and Geometrical Effect on the Motor Performance of Composite Squirrel Cage Rotor (복합재료 농형 회전자의 열적, 기하학적 특성이 모터 성능에 미치는 효과)

  • 장승환;이대길
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.77-89
    • /
    • 2001
  • Since the critical whirling vibration frequency of high speed built-in type motor spindle systems is dependent on the rotor mass of the built-in motor and the spindle specific bending modulus, the rotor and the shaft were designed using magnetic powder containing epoxy and high modulus carbon fiber epoxy composite, respectively. In order to increase the amount of the magnetic flux of the composite squirrel cage rotor of an AC induction motor, a steel core was inserted into the composite rotor. From the magnetic analysis, the optimal configurations of steel core and conductor bars for the dynamic characteristics of the rotor system were determined and proposed. The temperature dependence of composite squirrel cage rotor materials was investigated by various experiments such as TMA, DMA and VSM.

  • PDF

Study on Determination Principal Direction for Composite Rotor Blades (복합재료회전익의 주축계 결정화에 관한 연구)

  • 유용석;이종범;정경렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.354-359
    • /
    • 1995
  • 회전익의 소재로 복합재료를 선택하게 됨에 따라 헬리콥터의 유지, 보수 및 성능에서 유리하게 되었지만 허브 형태의 간소화로 인하여 해석상의 어려움은 확대 되었다고 할 수 있을 것이다. 따라서 회전익의 단면특성은 더욱 중요한 의미를 갖게 되었다. 회전익의 단면특성을 결정하기 위해서 우선적으로 각 방향운동의 연성항을 소거하는 것이 계산상 유리하고 따라서 관성주축방향을 결정하는 것이 중요하다. 그러나 회전익의 익형이 대칭형이 아니고 복합한 재료로 구성되어 있을 뿐 아니라 효율의 극대화를 위하여 축방향을 따라 비틀림을 부여하고 있기 때문에 관성주축의 방향을 결정하는데 많은 어려움이 존재한다. 따라서 본 연구에서는 실제 회전익을 그 연구 대상으로 회전익 단면의 등가강성행렬을 추출하고 외팔보의 공학이론과 회전행렬을 이용하는 방법으로 관성주축방향을 결정하는 방법을 제시하였다. 해석방법의 타당성을 확보하기 위하여 엄밀해를 알고 있는 간단해 단면을 갖는 외팔보를 이용하여 검증하였다. 이러한 방법은 관성주축방향을 결정하는 새로운 프로그램의 개발이라는 부담을 최소화 하였을 뿐 아니라, 해석방법 자체가 가지는 간편성으로 인하여 많은 시간과 노력을 줄일수 있을 것으로 기대된다.

  • PDF

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Mixed Mode Crack Extension in Orthotropic Materials (직방성 복합재료에서 혼합모드 균열의 진전)

  • Kang, Seok-Jin;Cho, Hyung-Seok;Lim, Won-Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.35-41
    • /
    • 2005
  • The problem of an orthotropic composite material with a central crack inclined with respect to the principal axes of material symmetry is studied. The material is subjected to uniform biaxial loading along its outer boundaries. The normal stress ratio theory is applied to predict initial crack extension behavior in cracked composite materials. The dependence of the crack extension angle with respect to the biaxial loading and the principal axes of material symmetry is discussed. Our analysis shows significant effects of horizontal loading, crack angle and fiber angle on the crack extension.

Study on the Durability of Composite Tilting Pad Journal Bearing for Turbo Compressor System under Oil-cut Situation (터보 컴프레셔용 복합재료 틸팅 패드 저널 베어링의 오일 공급 중단 상황에서의 내구성 연구)

  • Choe, Kang-Yeong;Jung, Min-Hye;You, Jun-Il;Song, Seung-A;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • The tilting pad journal bearing for the turbo compressor application has a role to support high speed and heavy loading rotor. White metal has been widely used for the bearing material but the conventional bearing is immediately suspended and induces serious serious damage to the rotor under the unexpected oil cut situation or the insufficient oil film formation. The carbon fiber reinforced composite having high specific stiffness, specific strength and excellent tribological characteristics can solve these seizure problems. In this work, the study on the durability of high thermal resistance carbon fiber/epoxy composite tilting pad journal bearing under oil cut situation was conducted. The material properties of the composite materials including tensile, compressive and interlaminar properties were measured at room and high temperature of oil cut situation. To investigate the possibility of failure of composite tilting pad journal bearing under oil cut situation, the stress distribution of the composite bearing was analyzed via finite element analysis and the Tsai-Wu Failure index was calculated. To verify the failure analysis results, the oil cut tests for the composite tilting pad journal bearing were conducted using industrial test bench.

Suppression of Machine Tool Spindle Vibration by using TiC-SKH51 Metal Matrix Composite (TiC-SKH51 금속 복합재를 이용한 공작기계 주축 진동 억제에 관한 연구)

  • Bae, Wonjun;Kim, Sungtae;Kim, Yangjin;Lee, Sang-Kwan
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.262-267
    • /
    • 2020
  • With increasing demands for high-speed machining and lightweight design of machine tools, increasing likeliness of generation of machine tool spindle vibrations has become an important issue. Spindle vibration has a significant impact on the surface finish of the workpiece in ultra-precision machining. It is necessary to resolve the machine tool spindle vibration in various machining processes to improve machining accuracy. In this paper, a TiC-SKH51 metal-matrix composite was used to suppress the vibration of the machine tool spindle. To confirm the dynamic characteristic of the TiC-SKH51 composite, impact hammer tests were conducted. After verifying the reliability of a finite element analysis (FEA) by comparing the results of the impact hammer test with the modal analysis using FEA, the analysis of the machine tool spindle model was performed. The FEA results show that the TiC-SKH51 composite applied machine tool spindle can be utilized to suppress the vibration generation.

Thrust Bearing Design for High-Speed Composite Air Spindles (고속 복합재료 공기 주축부를 위한 추력베어링 설계)

  • Bang, Kyung-Geun;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

Composite Aerostatic Spindle (복합재료 공기정압 주축부)

  • 방경근;장승환;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.134-138
    • /
    • 1999
  • For the stable operation of high speed aerostatic spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are not appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, the composite spindles with aerostatic bearing were designed and manufactured with carbon fiber/epoxy composite. The fundamental natural frequency of the composite spindle was evaluated through the modal testing.

  • PDF