• 제목/요약/키워드: 복합재료 안테나

검색결과 42건 처리시간 0.021초

복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가 (Design of Microstrip Antenna with Composite Laminates and its structural rigidity)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

접착필름의 영향을 고려한 다층 복합재료 안테나 구조 설계 (Design of multulayer Composite-Antenna-Structures considering adhesive)

  • 김동섭;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.236-239
    • /
    • 2004
  • 'Structural surface becomes an antenna.' This term, CAS, indicates antenna embedding in structural surfaces. The CAS is composed of several composite laminates and Nomex honeycombs, and microstrip antenna elements are inserted between layers with designed configurations. Constituent materials are selected considering electrical contributions as well as mechanical performances. Antenna design with adhesive films are impossible because cf their thin and rough distributions between honeycomb and substrate. Therefore, adhesive effects on antenna performances in CAS are experimentally investigated, CAS with targeted impedance and radiation characteristics are designed considering adhesive effects.

  • PDF

위성통신을 위한 복합재료 표면안테나 구조의 설계 및 해석 (Design and Analysis of Composite Surface-Antenna-Structure for the Satellite Communication)

  • 유치상;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2002
  • The present study aims to design a multiplayer microstrip antenna with composite sandwich construction and to estimate structural behavior of this multiplayer structure for the next generation of structural surface technology. This is termed Surface-Antenna-Structure indicating that structural surface becomes antenna. Constituent materials were selected considering electrical properties as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\times16$ array antenna. From electrical measurements it was shown that antenna performances were in good agreement with design requirements. Structural analysis showed this antenna structure was well designed for the mechanical rigidity. All constituent materials were characterized independently. The SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

복합재료 표면안테나 구조의 굽힘 피로특성 연구 (Bending Fatigue Characteristics of Surface-Antenna-Structure)

  • 김동현;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계 (High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb)

  • 유치상;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석 (Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna)

  • 임윤지;오영은;노진호;이수용;정화영;이재은;강덕수;윤지현
    • 한국항공우주학회지
    • /
    • 제47권10호
    • /
    • pp.705-711
    • /
    • 2019
  • 전개형 반사판 안테나의 전개거동 특성을 해석적 그리고 실험적 방법으로 분석하고자 한다. Kane 방정식을 이용하여 전개형 안테나의 다물체 운동방정식을 공식화하였다. 복합재료 반사판의 구조변형 특성을 살펴보기 위해 FSDT(First-order Shear Deformation Theory)를 이용하여 빔 모델로 유한요소 정식화 하였다. 역진자 모델을 이용하여 안테나 전개시간에 따른 스프링 상수 그리고 댐핑 계수들을 결정하였다. 다물체 동력학 해석을 통하여 설계변수에 따른 안테나 반사판의 동적구조 특성을 확인하였고, 무중력 모사 전개실험을 통하여 해석결과 검증 및 거동특성을 실험적으로 관찰하였다.

위상배열 응용을 위한 스마트 스킨 안테나 설계 및 제작 (Design and fabrication of Smart Skin Antenna for Phased Array Applications)

  • 손성호;황운봉
    • Composites Research
    • /
    • 제20권3호
    • /
    • pp.25-30
    • /
    • 2007
  • 본 논문에서는 위상배열로 응용할 수 있는 스마트 스킨 안테나에 대한 기본 설계와 제작에 대해 소개하였다. 스마트 스킨 위상배열 안테나는 기계적 회전 없이 전기적으로 안테나 방사패턴을 조향 제어할 수 있는 안테나로서, 강도 및 중량 등의 기계적 특성이 우수한 허니콤 샌드위치 구조를 이용하여 전기적, 기계적 특성을 모두 만족하도록 설계되어야 한다. 본 논문에서 제시한 스마트 스킨 안테나는 공진 주파수 5 GHz 원형편파의 $2{\times}2$ 부배열이며, 동축 케이블에 의한 프루브 급전방식으로 설계하였다. 그리고, 전자기 수치해석을 통하여 레이돔이 있는 경우와 없는 경우에 대해 비교 분석하였다. 이와 같이 설계된 안테나를 제작하여 안테나 성능시험을 하였으며, 그 결과 이득은 12.2 dBi, 주파수 대역폭은 6.4 %의 양호한 성능을 확인하였다.

우주비행체용 세라믹 복합재료 해외기술 동향 (Current Status of Ceramic Composites Technology for Space Vehicle)

  • 이호성
    • 항공우주산업기술동향
    • /
    • 제7권2호
    • /
    • pp.76-84
    • /
    • 2009
  • 본 논문에서는 우주비행체에 사용하는 세라믹 복합재료의 기술개발에 대한 외국의 현황을 검토하였다. 우주선진국에서는 세라믹 복합재료의 경량 및 우수한 고온 특성을 이용하기 위해 최첨단 엔진구조물에 적용하여 우주비행체의 성능을 향상시키기 위하여 많이 사용해왔다. 특히 내열성, 내산화성 그리고 고온에서의 높은 강도가 요구되는 우주비행체에 적합하여, 로켓엔진챔버, 노즐, 태양판, 레이더안테나, 우주반사경 구조물, 초음속비행체 선단부, 재진입비행체의 노즈팁, 그리고 우주비행체의 방열판등에 사용하고 있다. 이러한 부품을 제작하기 위한 공정기술과 현재의 응용사례를 제시되어 향후 국내의 우주개발사업에 적용될 수 있도록 하였다.

  • PDF

통신 안테나용 허니콤 샌드위치 구조물의 충격 손상에 관한 연구 (Impact Damage of Honeycomb Sandwich Antenna Structures)

  • 조성재;김차겸;박현철;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.74-77
    • /
    • 2001
  • The impact response and damage of CLAS panel was investigated experimentally. The facesheet material used was RO4003 woven-glass hydrocarbon/ceramic and the core material was Nomex honeycomb with a cell size of 3.2mm and a density of 96 kg/$\textrm{m}^{3}$. The shield plane used was RO4003 and 2024-T3 aluminum. Static indentation and impact test was conducted to characterize the type and extent of the damage observed in two CLAS panels, and the performance of antenna used in a wireless LAN system. Correlation of peak contact force, residual indentation and the delamination area shows impact damage of the panel with an aluminum shield plane is larger than that of the panel with RO4003 shield plane, although tile former is more penetration resistant. The damage was observed by naked eye, ultrasonic inspection and cross sectioning. The shape and size of delamination was estimated by ultrasonic inspection, and the area of delamination linearly increases as impact energy increases. The performance of impact damaged antenna was estimated by measuring return loss and radiation pattern.

  • PDF

전도체 형성 방법에 따른 유무기 복합재료 안테나의 고주파 특성 (Microwave Properties of Organic-inorganic Composite Material Antenna with Various Fabrication Method of Conduction Material)

  • 박상훈;성원모
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.832-837
    • /
    • 2006
  • Antennas were fabricated by physical(adhesive) and chemical(deposition+plating) method on organic-inorganic composite material. And antennas were measured dielectric constant and gain. Dielectric constant of antennas were fabricated by physical method was decreased with increase of adhesive tape thickness and number of conduction material composition. But antennas were fabricated by chemical method was reached to 90 % of dielectric material. Gain of antennas were fabricated by physical method was decreased with increase of adhesive tape thickness. But they were unrelated with conduction material composition. The other side antennas were fabricated by chemical method excelled more 0.8 dBic than antennas were fabricated by physical method in gain of antenna. Finally, chemical method can expect excellent product process because it can produce smaller size, higher gain and elimination of many handworks.