• Title/Summary/Keyword: 복합재료보강 구조물

Search Result 128, Processing Time 0.025 seconds

Experimental Investigation of the Shear Behavior of RC Beams Strengthened with Glass Fiber-Steel Composite Plate(GSP) (유리섬유-강판 복합재료(GSP)로 보강된 RC 보의 전단거동에 관한 실험적 연구)

  • Jang, Jun-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2007
  • Fiber-sheet and steel-plate strengthening methods have been mainly used for strengthening the RC structures. However, recently the application of these two methods have dramatically decreased due to premature debonding failure between concrete surface and fiber-sheet and heavy self-weight of steel-plate. This article presents experimental results of shear behavior in RC beams strengthened with GSP(Glass fiber-Steel composite Plate). The thin steel plate in GSP makes usage of the anchoring system possible, which could delay or prevent the premature debonding failure. Three reference beams and 60 strengthened beams with GSP were tested. The experimental results showed that strengthened beams with GSP considerably increased in shear capacity compared with the reference beams.

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • 복합재 적층판은 중량에 비해 높은 강성과 강도가 요구되는 공학의 다양한 분야에서 매우 유용하다. 보강섬유 복합재의 공학적 활용이 활발해지고, 중량의 감소화가 설계의 중요한 목적이 됨으로써, 근래 복합재 구조물들의 최적화 설계의 중요성이 대두되고 있다. 그러나 복합재 적층 구조물 재료의 비등방성에 의해 해석과 설계가 매우 어렵다. 본 연구에서는 수치적 최적화 방법과 유한요소법을 이용하여 보강섬유 복합재의 최적설계를 하였다. 복합재 적층판으로 이루어진 개단면 보에 있어서 보강섬유의 다양한 적층방향에 대한 거동의 영향을 규명하였다.

  • PDF

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

A study on Sliding Friction and Wear Characteristics of Hybrid Composites at Medium Sliding Speed (중속에서의 하이브리드 복합재료의 미끄럼 마찰 및 마모 특성에 관한 연구)

  • 정형범;윤재륜
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 2000
  • Tribological properties of fiber composite materials were measured and wear resistant hybrid structure was proposed based upon the understanding of tribological behavior of the composite materials. Unidirectional composites with glass fibers, carbon fibers, and aramid fibers were tested for tribological properties in order to propose a wear resistant hybrid structure. Hybrid composites which contain carbon and aramid fibers were prepared, the specimens were sliced by a water-jet cutter, and friction and wear properties were measured. An experimental set-up was designed and built for the friction and wear test of the composite specimens. Unidirectional fiber composite and hybrid composite specimens were tested to evaluated the tribological behavior for biomimetic applications. It is observed that the friction and wear behavior of fiber composites depends upon fiber orientation, sliding speed, and type of reinforcing fibers.

  • PDF

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Vibration and Buckling Characteristics for Composite Rectangular Plates Stiffened with Box Beam Stiffeners (상자형 보로 보강된 복합재료 사각판의 진동 및 좌굴특성)

  • Kim, Young-Wann;Chung, Kang
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.9-22
    • /
    • 2000
  • The Rayleigh-Ritz procedure based on energy method is used to present analytically the natural frequencies and the critical buckling loads for four types of loading conditions: (1) uniaxial, (2) biaxial, (3) positive shear and (4) negative shear, of the rectangular, composite plates unidirectionally stiffened with box beam type stiffeners. In analysis the discrete stiffener theory is adopted to present the effect of stiffeners in the plate structure. The convergence study is presented to demonstrate the accuracy of the results. Contour plots of the vibrated and buckled mode shapes are shown for some examples. The effect of various parameters such as numbers, position, aspect ratio of stiffener and layer angle, aspect ratio of plate are focused.

  • PDF