• Title/Summary/Keyword: 복합시트

Search Result 142, Processing Time 0.021 seconds

Experimental Study for Evaluating Structural Behavior of RC Beams Strengthened by Tapered Ended CFRP Sheets (계단식 단부 형태의 탄소섬유시트로 보강된 RC보의 구조거동 평가에 관한 실험적 연구)

  • Kim, Young-Hee;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.38-44
    • /
    • 2012
  • This paper presents experimental studies aiming at evaluation of structural behaviors of RC (Reinforced Concrete) beams externally strengthened with taper ended CFRPs(Carbon Fiber Reinforced Polymers). Experiments are performed with RC beams having different numbers of CFRP layers and length of each layer. The beams are subjected to four point-bending with simply supported condition. Test results of taper ended CFRPs and non-tapered CFRPs are compared and the better strengthening effect is observed from tapered ended CFRPs.

Experimental Investigation of the Shear Behavior of RC Beams Strengthened with Glass Fiber-Steel Composite Plate(GSP) (유리섬유-강판 복합재료(GSP)로 보강된 RC 보의 전단거동에 관한 실험적 연구)

  • Jang, Jun-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.130-140
    • /
    • 2007
  • Fiber-sheet and steel-plate strengthening methods have been mainly used for strengthening the RC structures. However, recently the application of these two methods have dramatically decreased due to premature debonding failure between concrete surface and fiber-sheet and heavy self-weight of steel-plate. This article presents experimental results of shear behavior in RC beams strengthened with GSP(Glass fiber-Steel composite Plate). The thin steel plate in GSP makes usage of the anchoring system possible, which could delay or prevent the premature debonding failure. Three reference beams and 60 strengthened beams with GSP were tested. The experimental results showed that strengthened beams with GSP considerably increased in shear capacity compared with the reference beams.

Convergence Study of Motorsports and Technology : Strength Analysis for the Design of CFRP Bucket Seat (모터스포츠와 기술 융합 연구 : CFRP 버킷 시트 설계를 위한 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.165-171
    • /
    • 2019
  • Engineering and Technology have been influencing a lot in the field of sports. Competitiveness, attributes of sports, have forced not only sports players but sports goods to enhance those performance. Particularly in the field of motorsports, the convergence of sports and technology has long been done to satisfy between performance and safety. In this study, strength analysis was carried with FEM to develop CFRP Laminate(Carbon Fiber Reinforced Plastic Laminate) bucket seat targeted to motorsports and car tuning industries and FIA($F\acute{e}d\acute{e}ration$ Internationale de l'Automobile) regulation was applied to design the racing seat and evaluate its strength. FEM modeling considered the attributes of composites was followed by strength evaluation based on Tsai-Wu failure index were done according to Lay-up sequence and layer numbers. The result showed that the lay-up sequence with stacking angle such as $[0^{\circ}/30^{\circ}/60^{\circ}/90^{\circ}/-30^{\circ}/-60^{\circ}]_4$ with 3mm form core was optimal selection in the field of weight and strength evaluation.

A Fundamental Study on Induction Technology of Separation Behavior Using Two-sided Adhesion of Joint of Composites Waterproofing System (시트-도막 복합방수공법의 접합부 2면 접착을 통한 분리거동 유도 기술에 관한 기초적 연구)

  • Park, Jin-Sang;Lee, Tae-Yang;Kim, Dong-Bum;Park, Wan-Goo;Heo, Neung-Hoe;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.212-219
    • /
    • 2015
  • This study focuses evaluating the efficiency and performance evaluation of composite type sheet-membrane waterproofing method that utilizes a separation behavior inducement system designed to resolve the chronic problems of disintegration and damage of overlap areas of waterproofing layers. As the result of the test, the tensile strength value was at 13.8N/mm and elongation rate at 587% for the separation behavior inducement type specimen, and the compared specimens had 14.2N/mm for tensile strength and 335% for elongation rate. For the separation behavior adhesion method specimen, when tensile stress or displacement occurred, the Zero-Span tension occurrence did not follow, which resulted in that the bottom sheet layer and the top membrane layer did not simultaneously becoming damaged. When undergoing the top and bottom layers were separated through separation behavior due to lack of flexibility, the bottom layer began to damage at the primary stage, and with the allowed boundary the upper membrane layer began to display flexibility and showed continuous displaced resulting in secondary phase damaging.

Effects of Annealing Temperature on Electromagnetic Wave Absorption Characteristics in FeCuNbSiB Alloy Flakes/Polymer Composite Sheets (FeCuNbSiB 합금 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 어닐링 온도의 영향)

  • Noh, Tae-Hwan;Lee, Tae-Gyu
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.198-204
    • /
    • 2007
  • The effects of annealing temperature on electromagnetic wave absorption characteristics in $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ for 1 h exhibited highest power loss in the GHz frequency range as compared with the sheets composed of the alloy flakes annealed at higher temperature than $475^{\circ}C$ or in as-milled state. Moreover the imaginary part of complex permeability had largest value in the GHz frequency range for the sheets including the flakes annealed at $425{\sim}475^{\circ}C$. The large value of power loss of the sheets including the magnetic flakes annealed at $425{\sim}475^{\circ}C$ was attributed to the high imaginary part of the complex permeability. However, because of its large transmission parameter $S_{21}$, the composite sheet having the magnetic flakes annealed at $525^{\circ}C$ showed low power loss.

Mechanical and Electrical Properties of Electrospun CNT/PVDF Nanofiber for Micro-Actuator (미세-작동기를 위한 전기방사 CNT/PVDF 나노섬유 기반의 탄소 복합재의 기계적 및 전기적 특성 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • The electrospun PVDF containing CNT was made for fabricating materials of the actuator. The electrochemical and their actuating movement were evaluated for the actuator performance in the electrochemical environment. The actuator (which was fabricated by electrospinning) had some advantages, i.e., good dispersion and flexible properties. In the electrospinning process, the final product would have different forms based on different essential factors. In this work, electrospun nanofibers were aligned by using the drum-type collector, and the morphology was identified via the field emission-scanning electron microscope (FE-SEM). The uniform dispersion of CNT in PVDF nanofiber was observed by electron probe X-ray micro-analysis (EPMA) test. The results of tensile strength and electrical resistivity provided the aligned state. The electrospun CNT/PVDF nanofiber sheet on the aligned direction showed better mechanical and electrical properties than the case of the vertically-aligned direction. The efficiency and electrical capacities of electrospun CNT/PVDF nanofiber sheets were compared with the cast PVDF sheet for actuator application. Electrospun CNT/PVDF nanofiber sheet exhibited much better the case of actuator performance than cast neat PVDF actuator, due to the excellent electrical connecting areas.

Flexural Behavior of FRC with Composite Waterproof Sheet (복합방수시트로 보강된 섬유보강콘크리트 휨거동)

  • Kim, Byoungil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.215-216
    • /
    • 2023
  • Leakage in the structure due to the irregular flow of groundwater in the underground structure penetrates into internal spaces such as underground parking lots and basement through underground walls, which is expensive in terms of maintenance of the building. In this study, various composite waterproofing methods installed on the outer walls of underground structures were selected to evaluate the structural performance of composite specimens due to bending behavior through experiments and analysis on bending test behavior on concrete attachment surfaces.

  • PDF

Dissolution Resistance Property of Modified Asphalt Waterproofing Sheet Coated with Polyamide Film by SEM-EDX Analysis (폴리아마이드 필름이 코팅된 개량 아스팔트 방수시트의 SEM-EDX 분석을 통한 유기용제 저항성 확인)

  • An, Ki-Won;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.437-444
    • /
    • 2017
  • In the composite waterproofing method in which a polyurethane coating waterproofing material is applied on the modified asphalt waterproofing sheet, the organic solvent is diluted in the coating waterproofing material in order to improve the workability. However, since the organic solvent is not volatilized before the curing of the polyurethane coating waterproofing material, the organic solvent causes dissolution of asphalt layer, thereby causing oil leakage. As a result, a polyamide film having a high dissolution resistance property was laminated on modified asphalt sheet, and through testing the dissolution resistance was visually confirmed and quantitative analysis of the polyamide film by SEM-EDX analysis was also used to confirmed the dissolution resistance of the polyamide film.

A Study on Heating Element Properties of Carbon Nanotube/Silicon Carbonitride Composite Sheet using Branched Structured Polysilazane as Precursor (가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구)

  • Huh, Tae-Hwan;Song, Hyeon Jun;Jeong, Yeong Jin;Kwark, Young-Je
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2020
  • In this paper, we manufactured silsesquiaznae (SSQZ)-coated carbon nanotube (CNT) surface heating elements, which allowed stable heating at high temperatures. The prepared composite sheet was confirmed by FE-SEM that the SSQZ fully coated the surface of CNT sheet. Furthermore, it was also confirmed that the silicon carbonitride (SiCN) ceramic formed by heat treatment of 800℃ have no defects found and maintain intact structure. The CNT/SiCN composite sheet was able to achieve higher thermal stability than raw CNT sheets in both nitrogen and air atmosphere. Finally, the CNT/SiCN composite sheet was possible to heat up at a temperature of over 700℃ in the atmosphere, and the re-heating was successfully operated after cooling.