• Title/Summary/Keyword: 복합개질

Search Result 219, Processing Time 0.026 seconds

화학적 처리에 의한 PET의 표면개질에 관한 연구

  • 정두감;김한도
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.102-105
    • /
    • 1998
  • 최근 공업기술의 발달로 금속, 고분자 및 세라믹 등과 같은 다양한 형태의 재료에 대한 수요가 급증하고 있다. 그런데 단일 물질로는 요구되는 여러 가지 성질들을 만족시킬 수 없기 때문에 여러 가지 기능이 복합된 복합재료(composite)의 요구가 더욱 증가되고 있다. (중략)

  • PDF

Thermal and Electrical Properties of PS/MWCNT Composite Prepared by Solution Mixing: Effect of Surface Modification of MWCNT (Solution Mixing법에 의한 PS/MWCNT 복합재료의 열 및 전기전도 특성: MWCNT 표면 개질의 영향)

  • Park, Eun-Ju;Lee, Jeong-Woo;Jung, Dong-Soo;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • Herein, the effect of the dispersion uniformity of the multi-wall carbon nanotube (MWCNT) on the thermal and electrical conductivity of polystyrene (PS)/MWCNT composite was investigated. The PS/MWCNT composites were prepared by solution mixing from dispersions of various MWCNTs in PS/tetrahydrofuran (THF) solution. Three types of MWCNTs were used; pristine MWCNT, hydroxyl functionalized MWCNT, which was functionalized with $KMnO_4$ in the presence of a phase transfer catalyst at room temperature, and pristine MWCNT with BYK-9077 as a dispersant. It was found that the stable dispersion state of MWCNT in PS/THF solutions significantly improved the thermal and electrical conductivity of the ultimate composites. It is noted that the thermal and electrical conductivity of PS/3 wt% pristine MWCNT composite with BYK-9077 were about 9.4 and 30~50% higher than those of PS/3 wt% pristine MWCNT composite, respectively.

Surface Modification of Reverse Osmosis Membrane with Diphenylamine for Improved Chlorine and Fouling Resistance (Diphenylamine에 의해 표면개질된 역삼투막의 내염소성 및 내오염성 향상)

  • Kwon, Sei;Jee, Ki Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2013
  • This study investigated the aromatic polyamide reverse osmosis membrane was modified with diphenylamine (DPA) for enhanced chlorine and fouling resistance and how to optimize. DPA has high reactivity and thermo chemical stability. The performance of a modified membranes was investigated and its surface analyzed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The experiment was conducted while changing the conditions of temperature and DPA solution concentration.

CDP 섬유의 염색성과 열처리 조건에 따른 구조 변화

  • 신우영;정동석;이문철
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • 단일섬유에 의한 제품의 생산은 줄어들고 복합화에 의한 섬유의 제품이 급속한 속도로 진행되고 있으며, 또한 섬유의 개질을 통해 장점은 더욱 부가시키고 단점은 감소시키는 개질 섬유의 사용이 계속적으로 증가하고 있다 그 중 캐티온 가염형 폴리에스테르(이하 CDP섬유)는 일반 폴리에스테르가 가지지 못하는 심오하고 매력적인 색상을 지닌 염기성염료를 흡착 할 수 있다는 장점을 가지고 있다. (중략)

  • PDF

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Permeation Property of Surface Modified Nanofiltration Membrane (표면 개질된 나노복합막의 투과 특성)

  • 박형규;탁태문;장경국;김은영;장하원;배태현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.153-155
    • /
    • 2004
  • 상전이법으로 제조된 비대칭막은 세공의 크기를 nm이하의 수준으로 줄여 주면 막 여과저항이 크게 증가하여 경제성이 떨어지는 문제점을 가지고 있다. 이에 대한 대안으로 복합막이 제조되어 사용되고 있는데, 복합막은 우수한 투과도와 높은 배제율을 달성하기 위한 적극적인 대안이 되고 있다. 정수처리 및 수질환경 분야에 사용되는 나노복합막의 경제성을 더욱 향상시키기 위해서는 나노막의 투과유속을 증가시켜야 하는데, 복합막의 투과 성능은 지지체의 특성과 스킨층을 형성시키는 기술에 의해 좌우된다.(중략)

  • PDF

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.