• 제목/요약/키워드: 복사서비스

검색결과 136건 처리시간 0.028초

메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현 (Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique)

  • 안찬규;유주봉;전준호;김우찬;양운근;나병구;이재호
    • 한국전자파학회논문지
    • /
    • 제21권12호
    • /
    • pp.1343-1351
    • /
    • 2010
  • 본 논문에서는 metamaterial CRLH(Composite Right- and Left-Handed) 구조 기반의 새로운 패치 안테나를 설계 제작하여 측정하였다. 일반 마이크로스트립 패치 구조의 기본 공진 모드인 반파장 공진이나 반파장 공진의 양의 정수배와 달리 제안된 안테나는 구조 전체에 전계가 같은 위상을 갖게 한다. 본 논문에서 제안하는 안테나는 요구되는, $\lambda/4$ 모노폴 안테나의 전형적인 특성인 전방향 패턴을 갖는 동시에 low-profile의 장점을 가진다. 제안된 안테나의 전산 모의 실험에는 Ansoft사의 FEM(Finite Element Method) 방식의 HFSS(High Frequency Structure Simulator)를 사용하였다. 제안된 안테나는 두께 1.6 mm, 유전율 4.4의 FR-4 기판을 사용하여 제작하였다. 구현된 안테나는 S-DMB(Satellite-Digital Multimedia Broadcasting) 서비스에서 사용되는 2.63~2.655 GHz에서 VSWR(Voltage Standarding Wave Ratio)$\leq$2임을 만족하며, 측정된 최대 이득과 효율은 각각 2.65 dBi와 81.14 %이다.

IMT-Advanced 능동위상배열 시스템용 고효율 송수신 모듈 설계 및 구현 (Design and Implementation of High Efficiency Transceiver Module for Active Phased Arrays System of IMT-Advanced)

  • 이석희;장홍주
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.26-36
    • /
    • 2014
  • IMT-Advanced 시스템을 효율적으로 서비스하고 시스템 효율을 증대시키기 위해서는 능동위상 배열구조의 안테나 시스템이 요구된다. 능동위상 배열 구조는 다수의 송수신 모듈과 다수의 복사소자로 구성되어 시스템의 효율을 증대시킬 수 있으며, 시스템을 구현하기 위해서는 초소형 고효율 송수신 모듈이 핵심이다. 최종 출력과 밀접한 관련이 있는 송신모듈의 전력증폭기는 기지국 시스템의 효율을 결정하는 핵심요소이다. 본 논문에서는 IMT-Advanced 능동위상배열 시스템에 적합한 초소형 고효율 송수신 모듈을 설계하고 구현하고자 하였다. 송수신 모듈은 온도보상 회로를 구현하여 이득 오차를 줄였으며, 선형화기는 소형화를 위하여 아날로그 방식으로 구현하였다. 초소형 고효율 전력증폭기를 구현하기 위해서 GaN MMIC Doherty 구조로 구현하였다. 구현된 송수신모듈은 $40mm{\times}90mm{\times}50mm$ 크기로 구현되었으며, LTE band 7에서 47.65 dBm의 출력을 가졌다. 실제 운용전력인 37 dBm에서 40.7%의 효율과 12 dB이상의 선형성 개선도를 보였다. 수신부의 잡음지수는 1.28 dB이하로 설계규격을 만족하였으며, 송수신 모듈의 이득과 위상은 6 bit로 제어로 최대 오차는 각각 0.38 dB와 2.77 degree를 보였다.

실시간 웹 크롤링 분산 모니터링 시스템 설계 및 구현 (Design and Implemention of Real-time web Crawling distributed monitoring system)

  • 김영아;김계희;김현주;김창근
    • 융합정보논문지
    • /
    • 제9권1호
    • /
    • pp.45-53
    • /
    • 2019
  • 급변하는 정보화 시대에서 웹사이트에 서비스되는 정보 과잉에 대한 문제들을 접하곤 한다. 정보가 많아도 쓸모 있는 정보는 없고, 필요한 정보를 선택하는데 불필요한 시간이 많이 소비 된다. 검색 엔진과 같은 여러 사이트에서는 데이터의 최신 상태 유지를 위해 웹 크롤링을 한다. 웹 크롤링은 대부분 방문한 사이트의 모든 페이지의 복사본을 생성하는 데 사용되며 검색 엔진은 이렇게 생성된 페이지를 더욱 빠른 검색을 위해 인덱싱 한다. 많은 데이터 중에 정보가 실시간으로 변경되는 도매정보, 주문정보 등의 제한된 웹 데이터 수집은 일반적인 주제 중심의 웹 데이터 수집으로 무리가 있다. 현재 제한적 웹 정보를 실시간으로 수집하고 저장하는 방법에 대한 대안이 제시되고 있지 않다. 본 논문에서는 제한된 웹 사이트의 정보를 수집하고, 데이터의 상세분석을 통한 수집 시간 예측과 분류 작업을 통해 병렬 시스템에 저장하는 웹 크롤링 분산 모니터링 시스템(R-WCMS)을 제안한다. 실험 결과 웹 사이트 정보 검색을 제안모델에 적용하여 15-17% 시간이 감소됨을 입증했다.

태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델 (DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics)

  • 가덕현;오승택;임재현
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.29-35
    • /
    • 2022
  • 자외선은 노출 정도에 따라 인체에 유익 또는 유해한 영향을 미치므로 개인별 적정 노출을 위해서는 정확한 자외선(UV) 정보가 필요하다. 국내의 경우 기상청에서 생활기상정보의 한 요소로 자외선 정보를 제공하고 있으나 지역별 자외선 지수(UVI, Ultraviolet Index)로 사용자 위치의 정확한 UVI를 제공하지는 못하고 있다. 일부에서는 정확한 UVI의 취득을 위해 직접 계측기를 운용하지만 비용이나 편의성에 문제가 있고, 태양의 복사량과 운량 등 주변 환경요소를 통해 자외선 양을 추정하는 연구도 소개되었으나 개인별 서비스 방법을 제시하지는 못하였다. 이에 본 논문에서는 각 개인별 위치에서의 정확한 UVI 제공을 위한 태양객체 정보와 태양광 특성을 이용한 UVI 산출 딥러닝 모델을 제안한다. 기 수집한 하늘이미지 및 태양광 특성을 분석하여 태양의 위치 및 크기, 조도 등 UVI와 상관도가 높은 요소들을 선정한 후 DNN 모델을 위한 데이터 셋을 구성한다. 이후 하늘이미지로부터 Mask R-CNN을 통해 추출한 태양객체 정보와 태양광 특성을 입력하여 UVI를 산출하는 DNN 모델을 구현한다. 국내 UVI 권고기준을 고려, UVI 8이상과 미만인 날에 대한 성능평가에서는 기준장비 대비 MAE 0.26의 범위 내 정확한 UVI의 산출이 가능하였다.

철원 자동농업기상관측자료의 품질보증 및 대표성 향상을 위한 제언 (Suggestions for improving data quality assurance and spatial representativeness of Cheorwon AAOS data)

  • 박주한;이승재;강민석;김준;양일규;김병국;유근기
    • 한국농림기상학회지
    • /
    • 제20권1호
    • /
    • pp.47-56
    • /
    • 2018
  • 농업은 인간의 활동 중 기상 활동에 가장 종속적이며, 기후 변화 및 기상 재해와 같은 대기 변동성의 증가 속에서 농업기상서비스의 중요성은 점점 증가하고 있다. 유용한 농업기상서비스를 제공하기 위해서는 관측 자료의 품질 관리와 더불어 실제 농경 활동 현장을 대표할 수 있는 곳에서의 기상 관측이 필수적이다. 이를 위해 기상청에서는 자동농업기상관측망(AAOS)을 실제 농경지 근처로 재배치하는 등 관측망 환경을 개선하고 있지만, 아직까지 모든 농업기상관측이 실제영농 환경이 아닌 잔디밭에서 이루어지고 있는 문제가 남아 있다. 기온, 상대 습도, 토양 온도, 토양 수분 관측요소는 지표면의 식생 형태와 관개 등의 영농 활동에 큰 영향을 받는데, 현재의 농업기상관측은 이러한 요소들의 영향을 관측하는데 근본적인 한계가 있다. 본 연구에서는 AAOS 관측 자료의 시간적, 연직적 변이를 분석하고, 실제 농경지 위에 설치된 국가농림기상센터(NCAM) 타워에서 관측하고 있는 공통 기상 및 토양 관측 요소를 비교하여, AAOS 관측 자료의 특성 및 문제점을 분석하였다. 분석 시기는 결측이 가장 적고 추수 이전인 8월과 추수 이후인 10월로 선정하였다. 각 관측 요소별로 관측 높이 및 깊이에 차이가 있었으므로, 차이가 가장 적은 높이 또는 깊이 값을 비교대상으로 선정하였다. 기온의 경우 AAOS 4 m 관측 값이 NCAM타워 관측 값이 비해 낮과 밤 또는 추수이전과 이후 모두 낮았으며, 큰 일중 변화 없이 일정한 차이를 유지하였다. 수증기압 역시 NCAM 관측 값이 AAOS 관측 값에 비해 항상 높았으며, 8월이 10월에 비해 더 큰 차이를 보였다. AAOS 순단파복사의 경우 AAOS 관측 반사복사량이 NCAM 관측 값에 비해 높은 경향을 보였다. 한편, 토양 관측 요소는 대기 관측요소에 비해 더 큰 차이를 보였다. 추수 이전인 8월에는 대부분 논에 물이 차 있었으며, 그로 인해 NCAM 관측 토양 온도가 AAOS 관측 토양 온도에 비해 낮았으며, 일 변화 폭 역시 작았다. NCAM 관측 토양 수분은 강수 여부와 관계 없이 지속적으로 포화상태를 유지하는 반면, AAOS 관측 토양 수분은 강수에 의해 증가한 뒤 감소하는 경향을 보였다. 추수 이후인 10월에는 8월과 다른 경향을 보였다. 토양 온도의 경우, NCAM 관측 값과 AAOS 관측 값의 일 평균값은 비슷하였으나 일 변화 폭은 NCAM 관측 값이 더 컸다. 토양 수분은 NCAM 관측 값이 지속적으로 높았으나, 두 관측 값 모두 강수에 의해 상승하고 증발 또는 배수에 의해 감소하는 경향을 보였다. 이상의 결과는 AAOS 관측 자료의 품질 관리 문제와 함께 논과 잔디밭이라는 지표면 피복 및 영농 활동의 영향을 반영하지 못하는 대표성 문제를 보여주는 것으로서, 본 연구는 2011년 이후 이루어지고 있는 기상청 농업기상관측장비의 농지 부근 이동 작업에 이은 후속 조치로, 농업기상 관측을 대표할 수 있도록 잔디밭이 아닌 논, 밭, 과수원 등 실제 지역 대표 농업 현장에 설치되어야 함을 제언한다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.