• Title/Summary/Keyword: 보 변형

Search Result 2,453, Processing Time 0.027 seconds

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.

A Convergent Study on Impact Analysis due to Existence or Non-Existence of Smart-phone Case (스마트폰 케이스의 유무에 따른 충격해석에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.225-229
    • /
    • 2020
  • In this study, the deformation and stress on each model was analyzed and the strength was compared with each other when the impacts on a total of four smart phone models was given. Models B and D with cases can be seen to have less deformation and stress than models A and C without cases. The models including the case have higher masses than the models without the case. So, the deformation and stress can be reduced by absorbing the impact force. In addition, the masses of models C and D are smaller than models A and B, but the stresses and deformations are seen to be smaller. If a case specialized for edge protection is chosen and designed when manufacturing a smart-phone in order to absorb the shock while weighing less, it is thought to improve the strength of the smart-phone and increase the durability. And it is seen that this study is adequate at the efficient design with durability of smart phone case practically and the aesthetic convergence of smart phone.

Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package (플립 칩 패키지 솔더의 탄소성 거동과 크립 해석)

  • Choi, Nam-Jin;Lee, Bong-Hee;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Creep behaviors of the solder balls in a flip chip package assembly during thermal cycling test is investigated.. A material models used in the finite element analysis are viscoplastic model introduced by Anand and creep model called partitioned model. Experiment of two temperature cycles using moir$\acute{e}$ interferometry is conducted to verify the reliability of material models for the analysis of thermo-mechanical behavior. Bending deformations of the assemblies and average strains of the solder balls due to temperature change and dwell time are investigated. The results show that time-dependent shear strain of solder by the partitioned model is in excellent agreement with those by moir$\acute{e}$ interferometry, while there is considerable difference between results by Anand model and experiment. In this paper, the partitioned model is employed for the time-dependent creep analysis of the FC-PBGA package. It is also shown that the thermo-mechanical stress becomes relaxed by creep behavior at high temperature during temperature cycles.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

An Analytical Study on System Identification of Steel Beam Structure for Buildings based on Modified Genetic Algorithm (변형 유전 알고리즘을 이용한 건물 철골 보 구조물의 시스템 식별에 관한 해석적 연구)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Cho, Tong-Jun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.231-238
    • /
    • 2014
  • In the buildings, the systems of structures are influenced by the gravity load changes due to room alteration or construction stage. This paper proposes a system identification method establishing mass as well as stiffness to parameters in model updating process considering mass change in the buildings. In this proposed method, modified genetic algorithm, which is optimization technique, is applied to search those parameters while minimizing the difference of dynamic characteristics between measurement and FE model. To search more global solution, the proposed modified genetic algorithm searches in the wider search space. It is verified that the proposed method identifies the system of structure appropriately through the analytical study on a steel beam structure in the building. The comparison for performance of modified genetic algorithm and existing simple genetic algorithm is carried out. Furthermore, the existing model updating method neglecting mass change is performed to compare with the proposed method.

Study for Curling Control of Plain Concrete in Underground Parking Lot (지하주차장 무근콘크리트 컬링제어를 위한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.243-249
    • /
    • 2018
  • The study for curling control of plain concrete in underground parking lot was conducted in this study. The shrinkage reducing agent(SRA) was used to minimize the curling deformation of plain concrete in underground parking lot. For the quantitative curling control, the simplified prediction method applying the deflection theory of cantilever beam was proposed too, and the validity of prediction method was examined through the comparison between the experimental values and predictive values. In result, the curling of SRA 1.0% concrete was about 30% less than that of SRA 0.0% concrete, and the possibility of curling estimation by the simplified prediction method was confirmed through the comparison between the experimental values and predictive values.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

Test of SRC Column-to-Composite Beam Connection under Gravity Loading (중력하중을 받는 SRC기둥-합성보 접합부 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Seong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.441-452
    • /
    • 2014
  • In this paper, steel reinforced concrete(SRC) column and composite beam connections were statically tested under gravity loading. The composite beam consists of H-section and U-section members. Five full-scaled specimens were designed to investigate the effect of a number of parameters on behavior of connections such as H-section size, the presence of stud connector, the presence of stiffeners and top bars. In addition, structural performance of welded joint between the H-section and the U-section members is mainly discussed, with an emphasis on initial stiffness, strength, deformation capacity.

Experimental Study on the Machenical Properties of Composite Beam Composed End Reinforced Concrete and Center Steel (RC-S 복합보의 역학적 특성에 관한 실험적 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.675-682
    • /
    • 2002
  • The beam of composite structure composed of the RC structure in the end part and steel structure in the central palt were investigated during cyclic loading, in order to evaluate strength, stiffness, and deformational capacity. The parameters used in this study include the amount of reinforced steel bar between the steel beam and RC structure and the existence of the sticking plate. Test results showed that all specimens had stabilized hysteresis loops. Likewise, the specimens with sticking plate had higher load-carrying capacity compared with the one without it. In addition, the stiffness of the composite structure was higher than the steel structure. All specimens also showed good rotational capacity.

The Stress Strain Behavior of Sand in Cubical Triaxial Tests (입방체형삼축시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 1993
  • A series of drained triaxial tests on sand was performed using the cubical triaxial appaiatus, in which three principal stress could be loaded independently. The test results indicated that the intermediate principal stress influenced on both stress strain behavior and strength of sand. The axial strain at failure decreased and volumetric strain increased with an increase of the intermediate stress under constant minor principal stress. The internal friction angle of sand increased in general with increase of the deviator stress ratio b(=(G.:-c, )1(G, -G, )) except slight decrease of the internal friction angle as b value approached to 1. Finally Lade's failure criterion presented good coincidence with the exper imental strengttL while Mohr Coulomb failure criterion underestimated the experimental strength.

  • PDF