• Title/Summary/Keyword: 보 변형

Search Result 2,453, Processing Time 0.032 seconds

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

An analysis on the products and process losses of group creativity among mathematically gifted students (수학영재의 집단창의성 발현에서 나타나는 산출 및 과정 손실 분석)

  • Sung, JiHyun;Lee, ChongHee
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.3
    • /
    • pp.505-530
    • /
    • 2017
  • Although mathematically gifted students have potential and creative productivity, they might not manifest group level creative synergy. To manifest group creativity among them, the manifestation process should be facilitated and the process losses should be minimized. The purpose of this study is looking for the method to facilitate the manifestation process of group creativity and minimize the process losses of it. To do this, a case study method was adopted. The products and process losses of the manifestation process of group creativity was analysed. In conclusion, the processes and products of group creativity were concretized and the process losses were analysed by social/motivational and cognitive factors. In addition, the justification and agreement were necessary for the manifestation process of group creativity among mathematically gifted students.

  • PDF

Geology and Mineralization in Constancia Porphyry Cu-Mo Mine, Cusco State, Southeastern Peru (페루 남동부 쿠스코주 콘스탄시아 반암동-몰리브데늄 광산의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-ho
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.193-199
    • /
    • 2016
  • Constancia mine is a deposit developed within Andahuaylas-Yauri Cu-Mo-Au metallogenic belt, southeastern Peru and is located in the southwestern part of Abancay deformation zone structurally as the porphyry copper deposit type. Mineralized zone in Constancia mine are composed of leached zone, secondary enrichment zone(ca. 1% Cu), mixed zone, primary mineralized zone(ca. 0.5%), skarn zone(ca. 1.5% Cu) from the upper part. Main country rock is monzonitic porphyry. Leached zone are characterized by the precipitation of limonite and looks brown in the outcrop. Oxidized zone have green due to the occurrence of copper oxide and secondary enrichment zone are characterized by the occurrence of chalcocite. Skarn zone are characterized by the occurrence of magnetite and garnet. Now, Hudbay, Canadian mining company, have 100% share about Constancia mine and started to produce commercially from January, 2015.

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Development of a Solid Modeler for Web-based Collaborative CAD System (웹 기반 협동CAD시스템의 솔리드 모델러 개발)

  • 김응곤;윤보열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.747-754
    • /
    • 2002
  • We propose a Web-based collaborative CAD system which is independent from any platforms, and develop a 3D solid modeler in the system. We developed a new prototype of 3D solid modeler based on the web using Java 3D API, which could be executed without any 3D graphics software and worked collaboratively interacting with each user. The modeler can create primitive objects and get various 3D objects by using loader. The interactive control is available to manipulate-objects such as picking, translating, rotating, zooming. Users connect to this solid modeler and they can create 3D objects and modify them as they want. When this solid modeler is imported to collaborative design system, it will be proved its real worth in today's CAD system. Moreover, if we improve this solid modeler adding to the 3D graphic features such as rendering and animation, it will be able to support more detail design and effect view.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.

Structure and Fatigue Analyses of the Inspection Equipment Frame of a Semiconductor Test Handler Picker (반도체 테스트 핸들러 픽커 검사장비 프레임에 대한 구조 및 피로해석)

  • Kim, Young-Choon;Kim, Young-Jin;Kook, Jeong-Han;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5906-5911
    • /
    • 2014
  • Currently, there are many processes of package assembly and inspections of real fields that examine whether a manufactured semiconductor can be operated regularly and can endure low humidity or high temperatures. As the inspection equipment of a semiconductor test handler picker has been used at the inspection process, these inspection equipment frames were modelled in 3D and these models were analyzed using 3 kinds of fatigue loadings. As the analysis result, maximum deformation occurred at the midparts of the frames at cases 1 and 2. Among the cases of nonuniform fatigue loads, the 'SAE bracket history' with the severest change in load became the most unstable but the 'Sample history' became the most stable. Fatigue analysis result can be used effectively with the design of an inspecting equipment frame of a semiconductor test handler picker to examine the prevention and durability against damage.

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.