• Title/Summary/Keyword: 보행자 이동

Search Result 223, Processing Time 0.023 seconds

The Rotated Hexagonal Lattice Model for Pedestrian Flow (보행교통류를 위한 회전육각격자모형 개발)

  • Lee, Jun;Heo, Min-Guk;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, the rotated hexagonal lattice model (RHLM) was proposed, which is applied to pedestrian flow, and developed the simulation model for the pedestrian counterflow. RHLM is an upgrade version of the square lattice model(SLM) and hexagonal lattice model(HLM). The simulation was performed at the hexagonal lattice $20{\times}20$ and evaluated by different speed, density and flow conditions. Simulation results are compared with SLM and show that RHLM can replicate the characteristics of pedestrian traffic more effectively and reliably than any other existing models from several perspectives. First, RHLM can explain the shortest-path movement of pedestrians and more realistic avoidance motion. If they cannot move straight direction, they can move shorter distance from previous position to destination. Second, RHLM reflects the characteristics that the pedestrian can move with higher capacity and the speed of pedestrian flow is hard to zero.

A Statistical Analysis of Evacuation Time based on Evacuee's Physical Conditions in a High-rise Building (재실자의 신체적 조건에 따른 초고층 건축물 피난시간의 통계적 해석)

  • Jeon, Eun-Myeong;Choi, Jun-Ho;Seo, Bo-Youl;Hong, Won-Hwa
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.261-266
    • /
    • 2010
  • 본 연구에서는 초고층 건축물에서 피난을 할 때 피난자에게 작용하는 신체 조건과 수직적 이동방향에 따른 피난시간을 분석하였다. 초고층 건축물에서의 피난은 특성상 많은 계단을 통해 이동해야 하므로 피난자는 심리적 행동보다 주로 신체적 능력에 의존하는데, 이 때 피난자의 피로도는 계단수가 올라갈수록 급격히 상승하게 된다. 즉, 총 피난시간은 단순히 피난자의 평지 보행속도에 비례하여 증감할 뿐만 아니라 체력 등의 다른 신체적 영향 또한 받게 된다. 따라서 본 연구에서는 피난자의 신체조건을 고려한 피난예상시간을 산정하기 위해 필요한 조건들을 연구하고자 실물 실험에서의 상 하향의 보행방향과 참가자들의 신체조건에 따른 피난시간을 통계적으로 분석하였다.

  • PDF

Integration of Space Syntax Theory and Logit Model for Walkability Evaluation in Urban Pedestrian Networks (도시 보행네트워크의 보행성 평가를 위한 공간구문론과 Logit 모형의 통합방안)

  • Kim, Jong Hyung;Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.62-70
    • /
    • 2016
  • Ensuring walkability in a city where pedestrians and vehicles coexist is an issue of critical importance. The relative relationship between vehicle transit and walkability improvements complicates the evaluation of walkability, which thus necessitates the formation of a quantitative standard by which a methodological measurement of walkability can be achieved inside the pedestrian network. Therefore, a model is determined whereby quantitative indices such as, but not limited to, experiences of accessibility, mobility, and convenience within the network are estimated. This research proposes the integration of space syntax theory and the logit path choice model in the evaluation of walkability. Space syntax theory assesses adequacy of the constructed pedestrian network through calculation of the link integration value, while the logit model estimates its safety, mobility, and accessibility using probability. The advantage of the integrated model hence lies in its ability to sufficiently reflect such evaluation measures as the integration value, mobility convenience, accessibility potential, and safety experienced by the demand in a quantitative manner through probability computation. In this research, the Dial Algorithm is used to arrive at a solution to the logit model. This process requires that the physical distance of the pedestrian network and the perceptive distance of space syntax theory be made equivalent. In this, the research makes use of network expansion to reflect wait times. The evaluation index calculated through the integrated model is reviewed and using the results of this sample network, the applicability of the model is assessed.

A Study on Target Tracking using Neural Networks (신경회로망을 이용한 물체 추적에 관한 연구)

  • 육창근;문옥경;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.426-428
    • /
    • 1998
  • 본 논문은 움직임 추정기법 중의 하나인 차영상 분석 기법을 기반으로한 이동 물체 추적 시스템을 제안한다. 실세계와 같은 복잡한 환경에서의 적응성을 높이기 위해 동적인 배경 추출 방법을 제안하고, 이를 바탕으로한 차영상 분석 기법을 이용하여 이동 물체를 탐지한 후 개선된 인공신경망의 경쟁학습 모델인 ART2 학습알고리즘을 이용하여 추적한다. 또한 이동 물체의 평가도 값이 아닌 RGB 컬러정보를 이용한 물체의 특징 벡터를 구한다. 이러한 특징 벡터들은 이동 물체의 모양이나 명암의 변화를 반영한다. 이러한 정보의 변화에 적응성을 갖게 하기위해 개선된 ART2를 사용한다. 그리고 실제 환경에서 보행자를 탐지, 추적하는 실험 결과 Gray 영상보다 정확한 추적이 가능하였다.

  • PDF

Establishment of a mobile monitoring system for roadside fine dust vulnerable point (이동형 도로변 미세먼지 취약지점 모니터링 시스템 구축)

  • Kim, Hyeok-Jung;Kang, Min-Ji;Kim, Han-Na
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.685-686
    • /
    • 2022
  • 미세먼지는 인체에 직·간접적인 질병을 유발하는 1급 발암물질로 알려져 있다. 본 논문에서는 도로변에서 발생 되는 미세먼지 및 미세먼지 전구체 농도를 측정을 위한 이동형 미세먼지 모니터링 시스템을 제안한다. 이 시스템은 기존의 대형차량 대비 미세먼지 측정 사각지대를 해소하고, 성능등급 1등급 장비 및 온습도 보정 모듈 장착으로 결과의 높은 정확도를 확보하였다, 또한, 개발된 데이터 표출 시스템을 통해 미세먼지 측정 차량을 운행한 결과를 웹사이트에서 실시간 확인 가능하도록 하였다. 이동형 미세먼지 측정 차량 운영을 통해 얻어진 정보는 보행자를 위한 정보 제공 및 미세먼지 저감 및 관리를 위한 정책 마련의 기초정보로 사용될 것을 기대한다.

  • PDF

Implementation of Emergency Evacuation Support System in Panic-type Disaster (돌발성 재해에 대비한 긴급 피난 지원 시스템의 구현)

  • Hwang, Jun-Su;Choi, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1269-1276
    • /
    • 2016
  • Recently, natural disasters including earthquakes, tsunamis, floods, and snowstorms, in addition to disasters of human origin such as arson, and acts of terror, have caused numerous injuries and fatalities around the world. During such disasters, victims need to obtain information such as the exact location of the disaster and appropriate evacuation routes in order to relocate to safe areas. In this study, We propose the algorithm for Emergency Rescue Evacuation Support System(ERESS). In case a emergency disaster occurs, ERESS is possible to detect it quickly using through the movement of people. The mobile terminal analyzes behavior and location of indoor pedestrian. And it sends the result to the server. The server determines whether an emergency situation occurred or not based on the received transmission information. When an emergency situation occurs, the server will notify it to the mobile terminal. Then, indoor pedestrian conduct emergency evacuation using mobile terminal.

Generation of Indoor Network by Crowdsourcing (크라우드 소싱을 이용한 실내 공간 네트워크 생성)

  • Kim, Bo Geun;Li, Ki-Joune;Kang, Hae-Kyong
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 2015
  • Due to high density of population and progress of high building construction technologies, the number of high buildings has been increasing. Several information services have been provided to figure out complex indoor structures of building such as indoor navigations and indoor map services. The most fundamental information for these services are indoor network information. Indoor network in building provides topological connectivity between spaces unlike geometric information of buildings. In order to make indoor network information, we have to edit network manually or derive network properties based on the geometric data of buildings. This process is not easy for complex buildings. In this paper, we suggest a method to generate indoor network automatically based on crowdsourcing. From the collected individual trajectories, we derive indoor network information with crowdsourcing. We validate our method with a sample set of trajectory data and the result shows that our method is practical if the indoor positioning technology is reasonably accurate.

Design of complex IPS system to improve positioning accuracy (측위 정확도 향상을 위한 복합 IPS 시스템 설계)

  • Lee, Hyoun-sup;Kim, Jin-deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1917-1922
    • /
    • 2017
  • WPS(Wifi Positioning System) conducts positioning using wireless signals scattered in real world. This process is divided into two stages: Construction Stage that collects information on wireless signals for determining location and constructs a radio map and Positioning Stage that compares the constructed information with the collected information on wireless signals. WPS lowers the accuracy of positioning if changes occur to the collected signals during positioning. PDR have recently been studied. IPS is a system designed to find out the final destination by analyzing pedestrian's no. of gait, travel range, and direction through inertial sensors. If the positioning results of WPS appear in more than two locations, it can be thought as the problem of positioning accuracy. In some cases, problems occur. In this respect, this study analyzes the situations in which the problem as mentioned above occurs and proposes a system to solve this problem through PDR.

Pedestrian Walking Velocity Estimation based on Wearable Inertial Sensors and Lower-limb Kinematics (착용형 관성센서 및 인체 하지부 기구학 기반의 보행자 속도추정에 관한 연구)

  • Kim, Myeong Kyu;Kim, Jong Kyeong;Lee, Donghun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.799-807
    • /
    • 2017
  • In this paper, a new method is proposed for estimating pedestrians' walking velocity based on lower-limb kinematics and wearable inertial measurement unit (IMU) sensors. While the soles and ground are not in contact during the walking cycle, the walking velocity can be estimated by integrating the acceleration output of the inertial sensor mounted on the pelvis. To minimize the effects of acceleration measurement errors caused by the tilt of the pelvis while walking, the estimated walking velocity based on lower-limb kinematics is imposed as the initial value in the acceleration signal integration process of the pelvis inertial sensor. In the experiment involving outdoor walking for six minutes, sensor drift due to error accumulation was not observed, and the RMS error in the walking velocity estimation was less than 0.08 m/s.

The Effects of Yoga Exercise on Balance and Gait Velocity in Stroke Patient (요가운동이 뇌졸중 환자의 균형과 보행속도에 미치는 영향)

  • Song, Hyun-Seung;Kim, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.294-300
    • /
    • 2013
  • The purpose of this study was to analyse the effects of yoga exercise on balance ability and gait velocity in stroke patients. Subjects were categorized in to a control group and yoga program group with 9 for each group. Yoga program was conducted for 60minute for 8weeks, three times a week. For the purposes, the study measured Stability Index(SI, postural sway) and Weight Distribution Index(WDI) using Tetrax, Functional Reach Test(FRT), Dynamic Gait index(DGI) and 10 meter walking test. At pre- and post-exercise after appling the yoga exercise, the data was analyzed. Yoga exercise group's SI and WDI were decreased, FRT and DGI were increased in comparison with control group. But 10 meter walking test was no significance. It suggests that the yoga exercise could promote recovery from balance disorder after stroke.