The Rotated Hexagonal Lattice Model for Pedestrian Flow

보행교통류를 위한 회전육각격자모형 개발

  • 이준 (연세대학교 도시공학과) ;
  • 허민국 (연세대학교 도시공학과) ;
  • 정진혁 (연세대학교 도시공학과)
  • Published : 2009.02.28

Abstract

In this paper, the rotated hexagonal lattice model (RHLM) was proposed, which is applied to pedestrian flow, and developed the simulation model for the pedestrian counterflow. RHLM is an upgrade version of the square lattice model(SLM) and hexagonal lattice model(HLM). The simulation was performed at the hexagonal lattice $20{\times}20$ and evaluated by different speed, density and flow conditions. Simulation results are compared with SLM and show that RHLM can replicate the characteristics of pedestrian traffic more effectively and reliably than any other existing models from several perspectives. First, RHLM can explain the shortest-path movement of pedestrians and more realistic avoidance motion. If they cannot move straight direction, they can move shorter distance from previous position to destination. Second, RHLM reflects the characteristics that the pedestrian can move with higher capacity and the speed of pedestrian flow is hard to zero.

본 연구에서는 SLM(Square Lattice Model)과 HLM(Hexagonal Lattice Model)을 개선하여 만든 RHLM(Rotated Hexagonal Model)을 제시하고, 이를 이용하여 양방향 보행 교통류의 시뮬레이션 모형을 개발하였다. $20{\times}20$의 400개 셀에서 진행되었으며, 시간의 변화에 따른 속도, 밀도, 교통류율로 평가하였다. 본 모형을 같은 조건에서 SLM과 비교해본 결과, 기존의 모형이 보행자의 움직임이 불필요한 동작과 비논리적 방향으로 이동하는 것을 모형에 반영하였다면, 본 모형은 보행자의 직진 움직임과 자연스러운 회피 방법을 통해 보행교통류의 최단경로 움직임을 표현할 수 있었다. 또한 보행교통류의 더 높은 곳에서 용량을 가지고 보행을 할 수 있는 현상을 반영할 수 있었고, 보행교통류의 경우 밀도가 높아지더라도 속도가 0이 되는 상황은 잘 일어나지 않는 것을 반영할 수 있음을 알 수 있었다.

Keywords

References

  1. T. Jin(1997), Studies on Human Behavior and Tenability in Fire Smoke, Proceedings of the 5th international symposium IAFFS, Melbourne Australia, pp.3-21
  2. T. Jin and T. Yamada(1985), Irritating Effects from Fire Smoke on Visibility, fire Science and Technology, Vol. 5, No. 1, pp.79-80 https://doi.org/10.3210/fst.5.79
  3. T. Jin(1976), Visibility Through Fire Smoke, Report of the Fire Institute of Japan No. 42
  4. H. Muir and C. Marrison(1996), A. Evans, Aircraft Evacuation: The Effect of Passenger Motivation and Cabin Configuration Adjacent to the Exit, CAA Paper 89019, ISBN 0860394069, CAA London
  5. S. Gwynne, E.R. Galea, M. Owen, P.J. Lawrence(1998), An Investigation of the Aspects of Occupant Behaviour Required for Evacuation Modelling, Journal of Applied Fire Science Vol. 8, pp.19-59
  6. R. Futian(1993), Psychology of Traffic Engineering, Beijing University of Technology Publishing House, pp.201-204
  7. G. Ho, C.T. Scialfa, J.k. Caird, T. Graw (2001), Visual Search Traffic Signs, The effects of Clutter, Lminace, and Aging, Human Factors, 43, pp.194-207 https://doi.org/10.1518/001872001775900922
  8. Y. Guoli(2004), Application of Eye Move Analysis Method, In: Psychological Research, Tianjin Education publishing houses, pp.340-355
  9. J.J. Tecce(1992), Psychology, Physiology and Experimental. In: McGraw-Hill Yearbook of Science and Technology, New York: McGraw-Hill, pp.375-377
  10. S.P. Hoogendoorn, P.H.L. Bovy(2003), Simulation of Pedestrian Flows by Optimal Control and Differnctial Games, Optimal Control Applications and Methods 24, pp.153-172 https://doi.org/10.1002/oca.727
  11. D. Helbing, J.,Ill$\acute{e}$s. Farkas, Tam$\acute{a}$s Vicsek(2000), Simulation Dynamical Features of Escape Panic, in: Nature 407, pp.487-490 https://doi.org/10.1038/35035023
  12. S.P. Hoogendoorn, W. Daamen(2005), Pedestrian Behavior at Bottleneck, Transportation Science 39, pp.147-159 https://doi.org/10.1287/trsc.1040.0102
  13. G. Casella, R.L. Berger(1990), Statistical Inference, Duxbury Press, Belmont, California
  14. S.P. Hoogendoorn, W. Daamen, R. Landman (2004), Microscopic Calibration and Validation of pedestrian Models-Cross-Conparison of models using Experimental data, Transport & Planning Department, Delft University of Technology
  15. S. Maniccam(2002), Traffic jamming on hexagonal lattice, Physica A 321
  16. Masakuni Muramatsu, Tunemasa Irie, Takashi Nagatani(1999), Jamming transition in pedestrian counter flow, physica A 267, pp.487-498 https://doi.org/10.1016/S0378-4371(99)00018-7