• Title/Summary/Keyword: 보플랜지 용접접합

Search Result 32, Processing Time 0.028 seconds

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.

Structural Characteristics of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조특성)

  • Lee, Seong Hui;Jung, Hun Mo;Kim, Dae Jung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.711-722
    • /
    • 2008
  • Existing tube for concrete filled tubular structure is made through welding of four plates irrespective of tube thickness, so production performance is poor and special welding technique is needed to weld the internal diaphragm and through the diaphragm. Therefore, through manufacturing by cold forming development of beam to column connections that is no welding in position of stress concentration is needed. In this study the proposal of beam to column connections details and to making tube specimens by method of bending steel plates, we want to know the compositeeffect between internal anchor and concrete by processing on stress distribution and internal force evaluation of concrete filled tube beam to column connections with a variable of flange welding existence between column and beam, welding quantity between column and diaphragm, existence of concrete in tube, column with diaphragm and general column.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.

Seismic Retrofit of Welded Steel Moment Connections Considering the Presence of Composite Floor Slabs (바닥슬래브를 고려한 용접철골모멘트접합부의 내진보강)

  • Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.25-36
    • /
    • 2017
  • In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange was prevalent. The presence of a concrete slab and resulting composite action was speculated as one of the critical causes of the prevalent bottom flange fracture. In this study, four seismic retrofit schemes are proposed in order to salvage welded steel moment connections with composite floor slabs in existing steel moment frames. Because top flange modification of existing beams is not feasible due to the presence of a concrete floor slab, three schemes of bottom flange modification by using welded triangular or straight haunches or RBS(reduced beam section), and beam web strengthening by attaching heavy shear tab were cyclically tested and analyzed. Test results of this study show that haunch and web-strengthened specimens can eliminate the detrimental effect caused by composite action and ensure excellent connection plastic rotation exceeding 5% rad. Design recommendations for each retrofit scheme together with supplemental numerical studies are also presented.

An Experimental Study on the Hysteresis Behavior of WUF-B Beam-Column Connection using SN Steel (건축구조용강재(SN490) 조립 H형강 기둥-보 접합부의 이력거동에 관한 실험적 연구)

  • Kim, Sun Hee;Lee, Seong Hui;Kim, Jin Ho;Kim, Dae Jung;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • The brittle failure where is occurred the welding position of column-beam flange of WUF-B connection that consider about a seismic detail possess a superior ductility capacity before Northridge earthquake 1994, require newly study about WUF-B connection. SAC Steel Project suggests a seismic detail to FEMA-350 by supporting of FEMA. It revise shape of weld access holes of WUF-B connection, welding processand welding material etc, In spite of these revision, AISC Seismic Provisions (2005) prescribe WUF-B connection using an only OMF. Recently in Korea, as the earthquake of about seismic intensity 5 occur, the necessity of revision for connection seismic detail comes to the front in Korea and FEMA-350 connection seismic details are going to include in KBC-2008 as it is. In this study, two column-beam connection specimens were marked by using SM490, SN490 built-up H-section, and based on WUF-B detail prescription of FEMA350. The parameters of the specimens are types of steel (SM, SN), and evaluate the capacities of structure and seismic by experiment. Finally we confirm a superior ductility capacity aboutspecimens JB-1 and JB-2, using SM490 and SN490,and these specimens had sufficient OMF and SMF seismic capacity, as indicated in AISC Seismic Provisions (2005).

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

Seismic Design and Testing of Reduced Beam Section Steel Moment Connections with Bolted Web Attachment (웨브를 볼트로 접합한 보 플랜지 절취형(RBS) 철골모멘트접합부의 내진설계 및 성능평가)

  • Lee, Cheol Ho;Kim, Jae Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.689-697
    • /
    • 2005
  • Recent test results on reduced beam section (RBS) steel moment connections show that specimens with a bolted web connection tend to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. A review of previous test results indicates that the higher incidence of base metal fracture in bolted-web specimens is related, at least in part, to the web bolt slippage and the high stress concentration at the weld access hole with the lowest material toughness. The practice of providing web bolts uniformly along the beam depth based on the classical beam theory is questioned in this paper. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, is proposed together with improved connection details. A test specimen designed following the proposed procedure exhibited a cyclic connection rotation capacity sufficient for special moment frames without fracture.

Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections (복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.345-354
    • /
    • 2016
  • In the present study, hybrid moment connections of welding and bar reinforcement for composite beam-column connections were proposed. Concrete-filled octagonal tube and U-section were used for the column and beam, respectively. In the beam-column connection, the top flange and web of the beam U-section were connected to the column plate by welding. However, to reduce stress concentration at the weld joints, the bottom flange of the beam was not welded to the column plate. Instead, to transfer the tension force of the beam flange, reinforcing bars passing through the column plate were used. Four exterior connections with conventional welded and hybrid moment connections were tested under cyclic loading and their cyclic behaviors were investigated. The test results showed that the hybrid moment connections successfully transferred the beam moment to the column. The strength and ductility of the hybrid moment connections were comparable to the conventional welded moment connection with exterior diaphragm; however, the connection performance was significantly affected by the details of the hybrid moment connection.

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.