A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections

보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도

  • Received : 2005.10.10
  • Accepted : 2006.02.10
  • Published : 2006.02.27

Abstract

This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.

본 연구에서는 보 플랜지 절취형 (Reduced Beam Section, RBS) 철골모멘트접합부의 실험결과를 기초로 패널존의 적정강도를 제시하고자 하였다. RBS 충분한 실험자료가 보고 되어 있음에도 불구하고, 패널존의 적정강도 범위가 아직 제시된 바가 없다. 본 연구 및 다른 연구자의 실험결과에 의할 때, 패널존은 보 플랜지 그루브 용접부에 유해한 영향을 미치지 않고 0.01 radian의 소성회전각을 무난하게 발휘할 수 있음이 확인되었다. 또한 이 정도 크기의 패널존 소성변형을 허용하면 강한 패널존 시험체에 비해 횡비틀림 좌굴의 진폭이 절반 정도로 감소하였다. 이러한 실험적 관측을 토대로 RBS접합부의 소성변형능력을 향상시킴과 동시에 보의 소성힌지에 발생하는 좌굴의 크기를 줄일 수 있는 균형 패널존에 대한 강도 기준을 제안하였다.

Keywords

Acknowledgement

Supported by : RIST

References

  1. Chen, S. J., Yeh, C. H., and Chu, J. M. (1996). Ductile steel beam-to-column connections for seismic resistance. J. Struct. Engrg., ASCE, 122(11), pp. 1292-1299 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1292)
  2. Chi, B. and Uang, C.-M. (2002). Cyclic response and design recommendations of reduced beam section moment connections with deep column. J. Struct. Engrg., ASCE, 128(4), pp. 464-473 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(464)
  3. Choi, J. H., Stojadinovic, B., and Goel, S. C. (2000). Development of free flange moment connection, Technical Report UMCEE 00-15, Dept. of Civil and Environmental Engineering, Univ. of Michigan, Ann Arbor, Mich
  4. El-Tawil, S. (2000). Panel zone yielding in steel moment connections. Engrg. J., 37(3), AISC, Third Quarter, pp. 120-131
  5. Engelhardt, M. D., Winneberger, T., Zekany, A. J., and Potyraj, T. J. (1998). Experimental investigations of dogbone moment connections. Engrg. J., 35(4), AISC, Fourth Quarter, pp. 128-139
  6. Engelhardt, M. D., Venti, M. J., Fry, G. T., Jones, S. L., and Holliday, S. D. (2000). Behavior and design of radius cut reduced beam section connections, SAC/BD-00/17, SAC Joint Venture, Sacramento, Calif
  7. Iwankiw, N. (1997). Ultimate strength consideration for seismic design of the reduced beam section (internal plastic hinge).' Engrg. J. 34(1), AISC, First Quarter, pp. 3-16
  8. Jones, S. L., Fry, G. T., and Engelhardt, M. D. (2002). Experimental evaluation of cyclically loaded reduced beam section moment connections. J. Struct. Engrg., ASCE, 128(4), pp. 441-451 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(441)
  9. Kawano, A. (1984). 'Inelastic behavior of low-rise frame based on a weak beam-to-column connection philosophy to earthquake motion.' Proc. Eighth World Conference on Earthquake Engineering, Vol. IV, San Francisco, Calif., pp. 519-526
  10. Krawinkler, H. (1978). Shear in beam-column joints in seismic design of steel frames. Engrg. J. 15(3), AISC, Third Quarter, pp. 82-91
  11. Krawinkler, H., Gupta, A., Medina, R., and Ruco, N. (2000). Loading histories for seismic performance testing of SMRF components and assemblies, Report No. SAC/BD-00/10. SAC Joint Venture, Sacramento, Calif
  12. Plumier, A. (1997). The dogbone: back to the future. Engrg. J. 34(2), pp. 61-67
  13. Roeder, C. W. (2002). General issues influencing connection performance. J. Struct. Engrg., ASCE, 128(4), pp. 420-428 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(420)
  14. SAC (2000). Seismic design criteria for new moment-resisting steel frame construction, Report No. FEMA 350, SAC Joint Venture, Sacramento, Calif
  15. American Institute of Steel Construction (AISC). (1997 and 2002). Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago
  16. Suita, K., Inoue, K., and Kanoh, N. (2002). 'Strength and deformation of bolted beam-to-column connection accompanied by panel zone yield.' Proc. Fourth Taiwan-Japan-Korea Joint Seminar on Earthquake Engineering for Building Structures, Oct. 25-26, Seoul, Korea, pp. 67-75
  17. Tsai, K. C. and Chen, W.-Z. (2000). Seismic response of steel reduced beam section to weak panel zone moment joints. Proc. Third International Conference STESSA 2000, 21-24 August, Montreal, Canada
  18. Uang, C.-M. (1993). An evaluation of two-level seismic design procedure. Earthquake Spectra, 9(1), pp. 121-135 https://doi.org/10.1193/1.1585708
  19. Uang, C.-M. and Fan, C.-C. (2001). Cyclic stability criteria for steel moment connections with reduced beam section. J. Struct. Engrg., ASCE, 127(9), pp. 1021-1027 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1021)
  20. Yu, Q. S., Gilton, C., and Uang, C.-M. (2000). Cyclic response of RBS moment connections: loading sequence and lateral bracing effects, SAC/BD-00/22, SAC Joint Venture, Sacramento, Calif
  21. Zekioglu, A., Mozaffarian, H., Chang, K. L., and Uang, C.-M. (1997). Designing after Northridge. Modern Steel Constr., 37(3), pp. 36-42