• Title/Summary/Keyword: 변형률 응답 곡선

Search Result 14, Processing Time 0.025 seconds

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis (퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.

Analysis of Buried Pipelines Using Ground Strain Input from Seismic Waves (지반변형률에 의한 매설관의 지진차 거동 해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Eo. Jun;Lee, Kang-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.15-26
    • /
    • 2000
  • 지진파 전파로 인한 매설관에 작용하는 지진하중은 지진특성 및 지반조건에 따른 지반변형률로부터 산정되어야 한다. 그러나. 기존에 사용되고 있는 경험적인 방법에 의해 계산된 지반변형률 모형은 지진 및 지반의 지역적 특수성을 고려할 수 없는 문제점을 내포하고 있다. 따라서, 본 연구에서는 이러한 문제점을 개선하기 위하여 지진특성 및 지반조선을 반영할 수 있는 수정된 지반변형률 모형을 제안하고 개발된 모형을 매설관로의 지진해석에 지진하중으로 적용하였다. 여기서, 지반변형률을 예측하기 위한 지진판 전파속도는 지반조건을 고려할 수 있도록 파 에너지분포에 근거한 분산곡선을 제안하여 산정하였다. 이러한 과정을 통해 얻어진 지반변형률 산정방법에 타당성을 파악하기 위해 예측한 지반변형률과 과거 지진으로 실측된 지반변형률을 비교하였다. 타당성이 입증된 지반변형률 모형을 매설관의 하중으로 적용하여 지진해석을 실시하였으며, 계산결과는 범용 유한요소해석을 통한 동해석 및 응답변위법에 의한 결과와 비교하였다. 이를 통해 지반 변형률 모형을 적용한 매설관 지진해석의 타당성을 검증하였다. 또한, 지진 및 지반환경이 다른 다양한 관의 특성을 반영하기 위해, 지진 지반 및 관의 영향 인자에 대해 매개변수 해석에 실시되었으며, 이로써 본 연구의 활용성을 검토하였다.

  • PDF

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

A Parametric Study on the Earthquake Response Analysis based on the Equivalent Linear Theory (등가선형화에 의한 1차원 지진응답해석의 민감도분석)

  • 권오순;박우선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.5-17
    • /
    • 2000
  • 등가선형이론을 이용한 지진응답해석은 사용의 간편함 때문에 많이 사용되고 있지만, 대부분의 입력 정수들이 경험식에 의해 얻어지고 있어 심각한 오류를 발생시킬 여지가 있다. 입력정수를 실험의 결과로부터 얻을수 없다면 합리적인 방법을 통하여 입력 정수를 결정하여야 하며, 또한 입력 정수들이 해석결과에 어떠한 영향을 미치는지에 대한 고찰이 필요하다. 따라서 본 연구에서는 입력정수가 해석결과에 미치는 영향에 대한 민감도 분석을 실시하였다. 해석은 등가선형화 이론에 기초하여 개발한 액상화 해석프로그램(KLIq)을 이용하였다. 검토된 사항은 전단탄성계수와 감쇠비의 영향, 변형률의 영향, 반복계산에서 유효변형률 결정방법, 최대전자탄성계수의 영향, 변형률 의존곡선(자반의 종류)의 영향, 입력 지질파의 영향 등이다.

  • PDF

Undamped Forced Vibration Response of Curved Composite Panels using Enhanced Assumed Strain Finite Element-Direct Integration Method (추가변형률 유한요소-직접적분법을 이용한 복합적층 곡선패널의 비감쇠 강제진동응답)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • The composite shell element is developed for the solution of undamped forced vibration problem of composite curved panels. The finite element used in the current study is an 4-node enhanced assumed shell element with six degrees of freedom per node. The composite shell element is free of both shear and membrane locking phenomenon by using the enhanced assumed strain(EAS) method. A modification to the first-order shear deformation shell theory is proposed, which results in parabolic thorough-thickness distribution of the transverse shear strains and stresses. It eliminates the need for shear correction factors in the first order theory. Newmark's direct integration technique is used for carrying out the integration of the equation motion, to obtain the repones history. Parametric studies of curved composite panels are carried out for forced vibration analysis by geometrical shapes and by laminated composite; such as fiber orientation, stacking sequence.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.

Dynamic Shear Properties of Nak-Dong River Sand Determined by Resonant Column/Torsional Shear Test (공진주/비듦전단시험을 이용한 낙동강모래의 동적전단변형특성)

  • Kim, Jin-Man;Park, Yo-Hwan;Lim, Suck-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.5-15
    • /
    • 2009
  • Dynamic shear properties of Nak-Dong river sand were investigated to build a soil property database for Nak-Dong delta region. Samples were taken from the estuary and the midstream of the river. Laboratory specimens were prepared by air pluviation method, and were tested by using RC/TS apparatus at various confining stresses, relative densities and numbers of cycles. Shear modulus reduction and damping curves were developed using Ramberg-Osgood and Modified Hyperbolic Models. The developed curves, compared to those reported by other investigators, show only a slight difference. The outcome of this RC/TS experiments can be very important resources when accessing the dynamic response of sandy soils in Nak-Dong delta region in the future.

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests (액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정)

  • Tung, Do Van;Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.35-46
    • /
    • 2020
  • The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.