• Title/Summary/Keyword: 변형률 게이지

Search Result 92, Processing Time 0.032 seconds

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.

Simultaneous Sensing of Failure and Strain in Composites Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재의 파손 및 번형률 동시 측정)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.12-19
    • /
    • 2001
  • In aircraft composite structures, structural defects such as matrix cracks, delaminations and fiber breakages are hard to detect if they are breaking out in operating condition. Therefore, to assure the structural integrity, it is desirable to perform the real-time health monitoring of the structures. In this study, a fiber optic sensor was applied to the composite beams to monitor failure and strain in real-time. To detect the failure signal and strain simultaneously, laser diode and ASE broadband source were applied in a single EFPI sensor using wavelength division multiplexer. Short time courier transform and wavelet transform were used to characterize the failure signal and to determine the moment of failure. And the strain measured by AEFPI was compared with the that of strain gage. From the result of the tensile test, strain measured by the AEFPI agreed with the value of electric strain gage and the failure detection system could detect the moment of failure with high sensitivity to recognize the onset of micro-crack failure signal.

  • PDF

Strain Sensor Application Using Cellulose Electro-Active Paper(EAPap) (셀룰로오스 Electro-Active Paper(EAPap)를 이용한 변형률 센서)

  • Jang, Sang-Dong;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.915-921
    • /
    • 2009
  • Cellulose based electro-active paper(EAPap) is considered as a new smart material which has a potential to be used for biomimetic actuators and sensors. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. When the external stress is applied to EAPap, it can generate the electrical output due to its piezoelectric property. Using piezoelectric behavior of EAPap, we studied the feasibility of EAPap as mechanical strain sensor applications and compared to commercial strain sensor. By measuring the induced output voltage from the thin piezoelectric cellulose EAPap under static and dynamic force, we propose cellulose EAPap film as a potential strain sensor material.

Technique for the Measurement of Crack Widths at Notched / Unnotched Regions and Local Strains (콘크리트의 노치 및 비노치 구역에서의 균열폭 및 국부 변형률 정밀 측정기법)

  • Choi, Sok-Hwan;Lim, Bub-Mook;Oh, Chang-Kook;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.205-214
    • /
    • 2012
  • Crack widths play an important role in the serviceability limit state. When crack widths are controlled sufficiently, the reinforcement corrosion can be reduced using only existing concrete cover thickness due to low permeability in the region of finely distributed hair-cracks. Thus, the knowledge about the tensile crack opening is essential in designing more durable concrete structures. Therefore, numerous researches related to the topic have been performed. Nevertheless accurate measurement of a crack width is not a simple task due to several reasons such as unknown potential crack formation location and crack opening damaging strain gages. In order to overcome these difficulties and measure precise crack widths, a displacement measurement system was developed using digital image correlation. Accuracy calibration tests gave an average measurement error of 0.069 pixels and a standard deviation of 0.050 pixels. Direct tensile test was performed using ultra high performance concrete specimens. Crack widths at both notched and unnotched locations were measured and compared with clip-in gages at various loading steps to obtain crack opening profile. Tensile deformation characteristics of concrete were well visualized using displacement vectors and full-field displacement contour maps. The proposed technique made it possible to measure crack widths at arbitrary locations, which is difficult with conventional gages such as clip-in gages or displacement transducers.

Measurement of CTE Change in a Composite Laminate with Aging under Space Environment using Fiber Optic Sensors (광섬유센서를 이용한 우주환경하에서 복합재료 적층시편의 노화에 따른 열팽창계수변화 측정)

  • Gang,Sang-Guk;Gang,Dong-Hun;Kim,Cheon-Gon;Hong,Chang-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.21-26
    • /
    • 2003
  • In this research, the change of coefficient of thermal expansion (CTE) of graphite/epoxy composite laminate under space environment was measured using fiber optic sensors. Two fiber Bragg grating (FBG) sensors have been adopted for the simultaneous measurement of thermal strain and temperature. Low Earth Orbit (LEO) conditions with high vacuum, ultraviolet and thermal cycling environments were simulated in a thermal vacuum chamber. As a pre-test, a FBG temperature sensor was calibrated and a FBG strain sensor was verified through the comparison with the electric strain gauge (ESG) attached on an aluminun specimen at high and low temperature respectively. The change of the CTE in a composite laminate exposed to space environment was measured for intervals of aging cycles in real time. As a whole, there was no abrupt change of the CTE after 1000 aging cycles. After aging, however, the CTE decreased a Little all over the test temperature range. These changes are caused by outgassing, moisture desorption, matrix cracking etc.

Modal Analysis of Wind Turbine Blade Using Optical-Fiber Bragg-Grating Sensors (광섬유 브레그격자 센서를 이용한 풍력발전기 날개의 모드 해석)

  • Kim, Chang-Hwan;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.513-516
    • /
    • 2011
  • The dynamic behavior of a small wind-turbine blade was analyzed experimentally. Arrays of fiber Bragg-Grating (FBG) sensors attached along the blade were used to measure the strains of the blade surface. An impact test was performed to estimate the resonance frequencies of the fundamental and higher modes of the cantilever blade system developed for this study. The results were similar to the results for conventional strain gages. However, FBG sensors could sense modes that strain gauges could not sense. The strains obtained from the FBG sensor array were used to estimate displacement-mode shapes of the blade.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF

Design and Assembling of Load and Strain Measuring Equipment using Strain Gage and A/D Converter (Strain Gaged와 A/D 변환기를 이용한 하중, 변형률 측정장치 제작)

  • Park T.G.;Yang M.B.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.293-294
    • /
    • 2006
  • The conventional strain measuring device is costly and complicated - it is not simple to understand its structure. Hence, strain gage and the A/D converter are assembled to come up with a load and a strain measuring device. The device was tested for measuring the strain in a loaded specimen and the experimental results were compared to those obtained by a commercial strain indicator.

  • PDF

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete (콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교)

  • Yang, Eun-Ik;Kim, Il-Sun;Yi, Seong-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.