• Title/Summary/Keyword: 변형률적합법

Search Result 39, Processing Time 0.026 seconds

Constitutive Relation of Concrete to Predict P-M Interaction Strength of Rectangular CFT Short Columns (콘크리트충전 각형강관단주의 P-M 조합강도 예측을 위한 콘크리트 구성방정식)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2015
  • The plastic stress distribution method and the strain compatibility method are the two representative methods to calculate the P-M interaction strength of RCFT (rectangular concrete filled tube) columns. The plastic stress distribution method is approximate while the stress compatibility method should approach the exact solution if accurate constitutive relations of the materials involved are used. Recent study by the authors pointed out that, because of lack of accurate constitutive model for the concrete confined by the rectangular steel tube, no strain compatibility method according to the current structural provisions provides a satisfactory prediction of the P-M interaction strength of RCFT columns under various material combinations. An empirical constitutive model which can capture the stress-strain characteristics of the confined concrete of RCFT columns is proposed based on analyzing extensive exisitng test database. The key idea was to define the concrete crushing strain as a function of steel-to-concrete strength ratio and width-to-thickness ratio of steel tube. It was shown that the proposed model leads to more accurate and more consistent prediction of the P-M interaction strength of RCFT columns under general design conditions.

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index (GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • For the elasto-plastic analysis of a circular tunnel driven in a strain-softening rock mass subjected to a hydrostatic in-situ stress condition, this study suggests a convenient elasto-plastic analysis scheme which takes the strain-softening of GSI index into account and demonstrates its potential as a numerical tool in designing a circular tunnel. The suggested numerical scheme was developed by modifying the previous elasto-plastic procedure proposed by Lee & Pietruszczak(2008). With the assumption that GSI index of rock mass adjacent to the tunnel surface may be degraded due to the damage caused by the blasting and excavation, the concept of the strain-softening of GSI index was invoked. The concept provides a useful tool considering the strain-softening of the strength parameters appearing in the generalized Hoek-Brown criterion because these parameters can be evaluated empirically by use of GSI. In order to check the validity of the proposed scheme, the elasto-plastic analyses for circular tunnels were performed in various analysis conditions and the results were discussed.

Deflection Calculation Based on Stress-Strain Curve for Concrete in RC Members (콘크리트 응력-변형률 관계에 기반한 철근콘크리트 부재의 처짐 산정)

  • Choi, Seung-Won;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.383-389
    • /
    • 2010
  • The concrete structural design provisions in Korea are based on ultimate strength design. Up to service load stage, it is assumed a linear stress-strain relation, but there is no stress-strain relationship for a concrete material from service load stage to limat state. According to the current provisions, an independent method is provided for the each calculation of deflection and crack width. In EC2 provisions based on limit state design, however, a stress-strain relationship of concrete is provided. Thereby, it is able to calculate a strength as well as a deflection directly from concrete stress-strain relationship. In this paper the moment-curvature relationship is directly calculated from a material law using equilibrium and compatibility conditions. Then strength and deflection are formulated. These results are compared with the values from the current provisions in Korea. From the results, the deflection based on a moment-curvature relationship is well agreed with experimental results and it is appeared that the deflection after the yielding of steel is also possible.

Nonlinar Analysis of Reinforced Concrete Frames Considering The Strain-Softening of Concrete (변형연화현상을 고려한 철근콘크리트 골조의 비선형 해석)

  • 김진근;이태규
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.105-114
    • /
    • 1989
  • 휨을 받는 철근콘크리트 부재 단면의 연화현상은 구조물의 파괴하중 해석시 중요한 인자로 작용한다. 일반적인 탄-소성 이론에 근거한 소성한계해석법을 사용할 경우 철골 구조물에는 적합하지만 철근콘크리트 구조물에는 최대하중 이후의 연화현상으로 인하여 이 이론은 부적합하게 된다. 따라서 본 논문의 주목적은 변위제어방법을 사용하여 철근콘크리트 구조물이 파괴될 때까지의 완전한 거동을 이끌어 내는 것이다. 프로그램을 사용한 계산결과를 보다 빠르고 경제적으로 이끌어 내기 위하여 단면의 성질인 모멘트-곡률, 축력-축\ulcorner향 변형률, 그리고 전단력 변형률 곡선 등을 여러개의 직선적으로 단순화한 모델식을 사용하여 해석한다. 또한 연화현상을 고려한 유한요소의 해석결과는 사용된 요소의 크기에 따라 결과가 매우 다르게 나타나기 때문에 이를 방지하기 위하여 파괴에너지 개념을 도입하여 모멘트-곡률 곡선을 보정하여 구조계산에 적용시킨다. 이와 같이 단면을 층으로 나누어 해석하지 않고 직접 단면의 성질을 나타내는 곡선들을 적용한 본 프로그램으로 보와 골조를 해석한 결과는 실제적인 실험결과와 비교하였을 경우 거의 일치하게 나타난다.

Research of Residual Strain Calculation of Prestressed Concrete Beam Element (프리스트레스트 콘크리트 보 부재의 잔류변형 산정에 대한 연구)

  • Lee, Duck-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.555-562
    • /
    • 2014
  • To perform performance-based seismic design of buildings, it is necessary clear goal for usage and stability after an earthquake. To clear this goal, it requires a review of the constituent material of the building and, in particular, a member used as an indicator of the residual strain is useful. There are more usage of prestressed concrete because of prestressing steel witch has characteristics of the origin-oriented. In this study, the goal is estimating of residual strain on the prestressed concrete beam member. The expression for angle of deformed prestressed concrete beam member was obtained from using of curvature on the critical section and the equivalent plastic hinge length based on 'equivalent plastic hinge length method'. Considering the balance of strength and deformation conditions, suitable analysis values were derived from 'split Element Method'. Through various parametric studies, various factors affecting the residual strain were decided. Based on the results of this study, it is expected many researches will be proceed in the future.

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles (중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.204-211
    • /
    • 2022
  • In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

Development of Mechanical Test Techniques for Irradiated Zircaloy Cladding in Hot Cell (조사 지르칼로이 피복관의 기계적 특성시험 기술 개발)

  • 김도식;홍권표;주용선;안상복;송웅섭;유병옥;김기하
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.213-213
    • /
    • 2003
  • 고온 및 고압의 가혹한 방사선 분위기에서 사용되는 핵연료 피복관은 중성자 조사 및 수소화합물의 생성 등으로 인하여 기계적 성질이 저하된다. 따라서 조사된 핵연료 피복관의 손상기준 확립과 안전성 해석을 위해서는 연성 및 강도 등 기계적 특성을 정확히 이해하여야 할 필요가 있다. 핵연료 피복관의 종 및 횡 방향 인장특성 평가를 위하여 개발된 기존의 다양한 시험법들을 비교하고, 핫셀시험에 적합한 인장시험법을 개발하였다. 피복관의 종방향 인장시편은 튜브시편 또는 게이지부 내에서 균일한 변형률 분포를 얻도록 설계된 도그본 튜브시편(그림 1)을 사용한다. 피복관의 횡방향 인장시험에 사용되는 링시편(그림 2)은 게이지부 내에서 균일한 단축 원환변형율 분포 또는 평면변형율 조건을 나타내도록 설계한다. 연소 또는 조사된 피복관으로부터 시편을 제작하기 위해서는 핫셀 내에서 작업 이 가능한 방전가공기(그림 3)를 사용한다. 피복관의 종방향 인장시험용그립(grip)은 핀-부하형이며, 횡방향 인장시험의 경우는 시험 동안 시편의 곡률이 일정하게 유지 되도록 그립의 형상 및 치수를 결정한다(그림 4). 피복관의 종 및 횡방향 강도와 변형 등 기계적 특성을 평가하기 위한 응력-변형율 곡선은 시험기의 복합 강성(K)을 고려하여 결정한다. 이상과 같이 검토된 인장시험법은 피복관의 안전성 해석(safety analysis)과 관련 규정(regulatory)에서 사용되는 피복관 손상기준(fuel damage criteria)의 개선에 필수적인 자료를 제공한다.

  • PDF

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.