NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAMES
CONSIDERING THE STRAIN-SOFTENING OF CONCRETE
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ABSTRACT

Softening of reinforced concrete sections at advanced curvatures in flexure is taken into account in
collapse load analysis of frames. The entire load-deflection relation for cracking reinforced concrete frame
isanalyzed by displacement control method. For further simplification, the linearized forms of section behavior
for combined flexure, shear and axial force are used. The result of analysis by finite element method for
the materials with strain-softening is shown to spurious sensitivity to the chosen finite element size. If
the moment-curvature curve is modified for each element by introducing the conecpt of fracture energy
approach, this problem can be overcome. It is shown that this analytical result predicts well the experimental
result for softening structure.
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1. INTRODUCTION

Plastic limit analysis, which is commonly
used, quite differs from steel and concrete
frame structure. For steel frames, a collapse
load analysis based on the assumption of
elastic-perfectly plastic theory provides the
basis for the plastic limit analysis. The
extensive ductility of typical steel sections
at plastic state provides realism to the basic
assumption and the existence of a strain-
hardening range provides a factor of safety.
When loaded to destruction, however,
reinforced concrete frames exhibit a softening
response in which the load, after reaching
its peak value, does not follow a constant-
load yield plateau but gradually declines at
increasing displacement because of the limited
ductility and strain-softening behavior of
typical concrete sections. Due to the absence
of yield plateau, the conditions of plastic limit
analysis are not satisfied.

For this reason, we attempt here to analyze
the problem by the displacement control
method, which makes it possible to follow the
response up to the snapback point, if such
a point exists. This paper deals with collapse
load analysis of frames, based on an
assumption of behavior of sections subjected
to combined flexure, shear and axial force to
be performed. The purpose is to obtain the
entire load-deflection curve for strain-
softening structures in order to determine the
collapse load and the postpeak behavior, and
thereby to provide a speedy, realistic, and
economical method for the assessment of

collapse loads.
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2. CONSTITUTIVE LAWS OF CON-
CRETE AND REINFORCING BAR

In this study, the stress-strain curve of
reinforcing bar in tension and compression
is assumed to be elastic-perfectly plastic. For
concrete in compression, the stress-strain
curve is assumed as the following expression
and is shown in Fig. 1. The tensile strength

of concrete is neglected.
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where, €. . strain of concrete

O =

o

€, . strain of concrete at ultimate
compressive strength

o. . stress of concrete correspond-
ing to strain ¢, MPa

f.” . ultimate compressive strength
of concrete, MPa

m : empirical constant
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Fig. 1 Stress-Strain Curve of Concrete in
Compression



Using E. = 9.11x10° f./**(MPa)for Young's
modulus of concrete®”, we may evaluate the

constant as Eq. 3.

13 € 1 fc'0,7 mw
m (91110 12 ) = 0 1 (550) ] @
But the constant m is evaluated from the
proposed second order equation as Eq. 4
because it is impossible to find the constant
m directly. The comparison between Eq. 3 and

Eq. 4 is shown in Fig. 2.

m = 0.3574 +2.55 x 102’ +2.25 x 10", (4)

o Eq. 3
— Eq. 4
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Fig. 2 Relation of Compressive Strength of

Concrete and Constant m

3. NONLINEAR ANALYSIS METHOD

3.1 Conversion into the Displacement
Control

In this paper, we convert the load control
method into the displacement control method
in nonlinear analysis. The load control method
is that the applied load vector {f} is given,
then the unknown displacement vector {u}
can be solved by the iteration scheme. In the
displacement control method, meanwhile, if

the p-th displacement u, is controlled as known

{f} and

displacements which are not controlled are

value, the applied load vector
unknowns. Since each load which acts on a
structure can be expressed in terms of a
certain load {, the total load vector {f} can
be written as Eq. 5. Finally, we obtain the

resultant simultaneous equation of Eq. 6.

f, (m,
fz mz
: = : (5)
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Consequently the unknown loads and
displacements in these simultaneous equations
can be calculated by iteration until the
residual forees converge to the prescribed
tolerances and the element stiffness K's are

obtained by the Timoshenko beam theory'®.
3.2 Overall Program Structure

A load-deflection curve at a certain point
of a structure can be obtained by increasing
the displacement of that point and by iteration
scheme, as discussed previously, at each
increment stage with including the effect of
the strain-softening for concrete. To reduce
computation time, the stiffness is recalculated ‘
only for the first iteration of every increment
and kept constant thereafter until
convergence of solution is achieved. Fig. 3

shows the overall program structure.
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Fig. 3 Overall Program Structure

4. MODELING OF SECTION BEHAVIOR
FOR STRUCTURAL ANALYSIS

41 Modeling of Moment-Curvature

In a frame, the moment-curvature curve
of a given member section should be
determined by considering the combined effect
of moment and axial force. Based on the curves
of two cases  pure bending(P-=0) and
balanced state(P - P;) ~ the points of maximum
moment for each applied axial force are
approximately located on a chain line shown

in Fig. 4. The following equations are assumed

from the relationship of moment-axial force.

At a compressive failure part, that is, the

axial force P is greater than Py ;

R e

At a tensile failure part, that is, the axial
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Fig. 4 Location of Maximum Moment and Re-
lationship of Moment-Axial force

force P is less than Py

S SRANC = DEEEE

where, P, . balanced axial force, kN
M, : balanced bending moment, kN-m
P. . pure axial force, kN
M. ! pure bending moment, kN-m
Puo : axial force when bending

moment reaches M,, kN

a . constant = 1.81 —0.69A
B . constant = 3.73--3.13B

for which P is given value



for which M is given value

M - Mu

Ay B

For further simplification, the linearized
forms of moment-curvature curves such as
so called elastic-softening model and elastic
-plastic-softening model for compressive and
tensile failure part respectively are used.
Fig. 5 shows the linearized relationship
expressed in Eq. 9.

M, - (0.975-0.005P/P) My
# = '+ (p —) ¥ P/Py (9)
By = 22— ¢

—El

Moment

£l

(a) Elastic-Softening Model

Curvature
(b) Elastic-Plastic-Softening Model

Fig. 5 Simplified Moment-Curvature Relations

4.2 Modification of Moment-Curvature
Curve

In concrete structures which show strain
-softening, the curvature distribution of a
member section indicates a nonlinear form
where the bending moment exceeds the yield
moment M, of the section®™ as shown in Fig.
6. The actual curvature distribution at
ultimate can be idealized into elastic and

inelastic regions as shown in Fig. 6(c).
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Fig. 6 Curvature Distribution

The shaded area represents the plastic rota-
tion that occurs in addition to the elastic
rotation at the ultimate stage of the member.
Since the fracture energy for the member to
collapse must be constant, the plastic hinge

rotation should also have a constant value
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Fig. 7 Standard and Modified Moment-
Curvature Curves

and should be independent of the chosen
element size in the finite element analysis.
Therefore, if different element sizes are used
in analysis, moment-curvature curves need
to be modified in order to obtain consistent
results, and it can be achieved by using the
fracture energy concept®.

Fig. 7 shows the standard and the modified
moment-curvature curves that mean the
moment-curvature curve for the element with
the same element length of the plastic length
l, and for other element sizes, respectively.
If the chosen element length is [, the area

A, should be equal to the area A, which
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represents elastic zone. The area of inelastic
range, however, should be modified as A; [, =
Ai" 1 (1=2, 3, 4). Therefore, the modified slope

and curvature!”’ can be written as

(EDy = (ED: 0

l
b

& = ép (pi—pi-) + i )

There are several equations in the literature
for the plastic length of flexural beam. For
this study the mean value of following two
equations —Corley and Mattock® —is taken

as the plastic length.

I, = 05d+0.32z//d 12
l, = 0.5d +0.05z a3

where, d : effective depth of member, cm
z . distance of critical section to the

point of contraflexure, cm

43 Modeling of Axial Force-Axial Strain

Alike the moment-curvature curve for a
given applied axial force, the axial force-axial
strain curve also varies continuously accord-

ing to the applied moment. Accordingly, the
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Fig. 8 Location of Maximum Axial Force
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Fig. 9 Linearized Forms for Each Case

Table 1 Positions Assumed for Each Case
T Case 1 Case I Case II
P, 0.0 0.0 Pu(1-¢)
b 0.0 0.0 e(1—&)
P, 0.00 0.014P, Po(1—¢) + 0.014£P,
2 &2 0.00 €t ( —Pff";—l;;;) (Pwi —Pw) en - E(Es  €0p)
P Pm Pn Pun
e | 0s3 ep[—fﬂw—o.ssv} et (P-‘}?—) (émo—em) (2484~ 3.9¢+ 2.43)¢,
P, Pt~ Puo
P4 Pm o (53‘* Ez)EAz 0.4Pm 0-4Pm
4 Po— Py + 450P, ¢, ~ BAuts . 08P, . 08Pn
& 450P, — EA, T TTEA, T EA,
5 Ps 0.85P; o o
. & 0.01
P.—P, PP, P,
&= PP, X B.oPp. & = 0.0146m; o

Py . maximum axial force for a given moment

€op - axial strain at which moment reaches M,

P,, € . axial force and strain on the second contraflexure point for case [

EA:: second axial rigidity for case I

axial force-axial strain curve must be evaluat-
ed. The axial force is applied at the plastic
centroid of the section, and the axial strain
measures at that point.

Fig. 8 shows the location of the maximum
axial force for each applied moment, and three
different linearized cases of the section
behavior is shown in Fig. 9 (see Table 1 for

details). Based on the axial force-axial strain

relationships of twelve test sections, the
parameters of Table 1 are determined by using
the statistical method. Case 1 means the
uncracked section behavior. Case I and I
means the cracked behavior. That is, a re
latively low axial rigidity is noticed when the
applied moment is greater than the cracking

moment 0.3M,,
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44 Modeling of Shear Force-Shear Strain

The basic assumption is that the shear force
-shear strain curve varies according to the
axial force except combined moment. The
relation of axial force-shear force!'” are
shown in Fig. 10 and the equation assumed

is written by Eq. 14.

1.1x107° {" A
0.01+0.68rn" **

a-a 1= () ] o

Tm = 744 X 1074+ /4.61 x 10~ . —5.68 x 1077

Qm 5

kN) W

where, A ! area of section, m?
Q : shear force, kN
P, : given axial force( =0.5f."A)19,
kN
Qn : maximum shear force at axial
force P,, kN
rm . shear strain corresponding to

shear force Qm

Fig. 11 shows the linearized form of the

shear force-shear strain expressed in Eq. 15.

7o = I'm Q/Qm for P P,
= 05rm(Q—-Q.)/(Qu—Q.) for P Py (9
GAz = —0.068 GAI

where, 7, : shear strain corresponding to
shear force Q

Q. : pure shear force, kN

5. DISCUSSIONS FOR TEST RESULTS

Comparisons are made for two cases;
firstly, results obtained for various element
sizes of a under-reinforced beam in the
analyses are compared to each other, and
compared with experimental test result®V of
which test was subjected to flexural failure,

secondly, our analytical result is compared
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Fig. 10 Relation of Axial Force-Shear Force
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Fig. 11 Linearized Form of Shear Force-Shear
Strain
with the test result of frame up to flexural

failure?,

Sectional properties of the under-reinforced
beam and element sizes used are shown in
Fig. 12. As shown in Fig. 13(a) the results of
analyses for these beams are not consistent
after peak load when the real moment-
curvature curve was used. However, the
results using the modified moment-curvature
curve are gquite consistent as shown in Fig.

13(b). It is shown that the moment-curvature
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240 curve has to be modified in order to get

consistent result and these results predict
well the experimental result by Faud K.
180 7 N B1 Bashur''".

Fig. 14 shows the sectional properties of
[ \ the test model and the layout of frame, and
120 - ) B2 \ the result of the analysis for the frame is
/ \ shown in Fig. 15. Compared to the test result
60k /r by George C. Ernst™, the figure shows that
/ not only load-deflection curve can be com

pletely obtained up to failure, but also the

0 X 1 1 1 results of analysis by the method suggested
0 1 2 3 4 ] in this paper are quite close to the

experimental results.

6. CONCLUSIONS

-

\ﬁ, {l 1) Collapse load analysis of reinforced
§ r' | A concrete frames has been extended to
‘Q II \ include a softening stage, using
. displacement control method. As shown in
% i —--E);’Pﬁaﬂaf:he::dl Results Figs. 13 and 15, it can be seen that this
—_— pmpoaed Thoory analytical result predicts well the observed

N . A L experimental trends.
0 1 2 3 4 5 2) This program provides an more efficient,

5 » ical method, for a
Fig. 13 Load-Deflection Curves for Element speedy, and economi

Sizes Used complete analysis of reinforced concrete
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frames, than the program by using the
layered method.

3) The result of this nonlinear structural
analysis considering the strain-softening in
finite element method depends on the
element size beyond elastic limit. But if the
moment-curvature curve is modified for
each element by using the concept of
fracture energy approach, we can obtain
consistent results regardless of the element
size adopted.

4) Since the Timoshenko beam theory was
applied to present analysis, the obtained
peak loads of the load-deflection curve show
a little difference as the element size

varies.
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