• Title/Summary/Keyword: 변위손상

Search Result 322, Processing Time 0.026 seconds

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.

A Study on the Traumatic Teeth Damage of Children (어린이의 외상성 치아손상에 관한 연구)

  • Yoo, Su-Min;Park, Ho-won
    • Journal of dental hygiene science
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • In modern times, children's trauma is increasing every year because of car accidents and life environment changes. There is a limit to prevent traumatic damage for oral cavity organization. The fundamental data of trauma treatment and prevention will be presented through the survey and analysis of traumatic teeth damage. I examined 113 patients from Oct. 4th, 2000 to Feb. 27th, 2004 at Dept. of Children's Dental Clinic, Kangnung National University. The results are as follows. (1) The trauma frequency of male subjects is higher than that of female at a rate of 2.05:1. The average age is 5.27 for men and 5.27 for women. The highest percentage of trauma patients is among 2 year old children. It is 21.2%. (2) A patient survey was taken at a trauma treatment hospital. On the first day 34.4% of the patients had come to receive treatment of their first set of teeth. However, after a week, 38.8% of the patients had received treatment on their permanent teeth. (3) As a result of falling, 59% of patients needing treatment on their first set of teeth. 55.1% of patients is permanent teeth. As a result of bump against physical solid, 26.6% of patients is the first set of teeth and 26.5% of patients is permanent teeth. (4) Teeth damage happened at home. 42.1% were male. 35.1% were female. According to trauma, 59.4% of teeth damage happened at home. 28.6% of permanent teeth damage happened at school or kindergarten. (5) According to trauma, the number of teeth damaged was in the first set of teeth are as follows: 56.3%, one-31.3%, three or four-6.3% each. For permanent teeth: two-46.9%, one-28.6%, four over-16.3% and three-8.2%. Over four teeth is larger number for permanent teeth. (6) 56% of first set of teeth patients and 43.4% of permanent teeth patients were male. 56.8% of first set of teeth patients and 43.2% of permanent teeth were female. Trauma happened to both male and female frequently in the first set of teeth. (7) Most of the tooth damage which was in the first set of teeth and permanent teeth was done to the upper jaw. 75% of patients are the first set of teeth. 63.8% of patients are permanent teeth. Trauma is very high in the two mid teeth of the upper jaw. (8) According to trauma survey, 30.2% is from impulse. 28.0% is from crown fracture, 14.7% is from depression. 8.9% is from concussion. 7.1% is from full dislocation of a joint. 2.2% of patients are extrusion. 1.8% is from displacement. According to teeth damage trauma, 35.8% is pulse in the first set of teeth. The breaking of the crown of a tooth happened a lot in permanent teeth. (9) According to data, 43.2% of teeth damage in the first set of teeth goes without treatment. In permanent teeth, it is 38.9%. After treatment, 22.0% of first set of teeth treatment requires a dental pulp treatment. In permanent teeth, which is used for temporary acid etching resin restoration.

  • PDF

Effect of patch repair in aluminum plate with a circular hole by 3-D full layerwise model (완전 층별이론에 의한 원공을 갖는 알루미늄 판의 패치 보강 효과)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok;Yang, Seung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.304-307
    • /
    • 2009
  • 본 논문에서는 3차원 모델링을 이용하여 원공을 갖는 알루미늄 판의 패치 보강효과에 대해 알아보고자 한다. 구조물의 노후화로 인해 높은 응력을 받는 부재의 응력 특이점에서 내구력이 급격하게 저하되거나 때로는 부재의 정적파괴를 유발시키는 원인을 제공한다. 이로 인해 과거에는 손상된 모재에 보강 재료를 연결시키기 위하여 리벳 또는 볼트와 같은 기계적 연결을 통해 보강하였으나 최근에는 접착패치보강 기법이 그 주류를 이루고 있다. 패치 보강시 일면 패치 보강으로 인하여 면외 휨 효과가 발생된다. 판의 두께 방향에 따른 응력집중계수를 별도로 분석하였다. 기존의 3차원 솔리드 요소는 해의 정확성은 뛰어난 반면에 상당한 컴퓨터 시간을 요구하는 단점을 가지고 있다. 이러한 문제를 극복하기 위해서, 본 논문에서는 각 층의 변위장을 2차원 형상함수와 1차원 형상함수의 조합으로 구성하여, 면내거동에 대한 p-세분화와 면외거동에 대한 p-세분화를 분리시키는 방식을 취한다. 또한, 에너지 함수의 적분시 Gauss-Lobatto 적분법을 사용하여 절점의 위치에서의 응력점을 구하는 경우, 외삽과정을 계산하는 단계를 생략하면서도, 해의 정확성 측면에서는 거의 차이가 없기 때문에 좀 더 효율적인 수치적분이 될 수 있다.

  • PDF

Influence of Rock Fall on the Roofs and Rib Pillars at Multi-layered Room and Pillar Mine (다층 주방식 채광 광산에서 낙반이 천반과 광주에 미치는 영향)

  • Kim, Jong-Gwan;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • Influence of rock fall from upper-level roofs to lower-level roofs and pillars at a multi layered room and pillar mine was numerically simulated by using AUTODYN. The analysis results showed that the maximum displacement and stress in the roof of the lower-level stope are respectively 0.001 mm and 36 MPa, and those in the pillars of the lower-level stope are 0.0003 mm and 3 MPa. The maximum damage levels in the roof and pillar of the lower-level stope were evaluated to be about 0.03 when a half of the roof rock of the upper-level stope was assumed to be fallen to the floor.

Seismic Performance of a Hollow Composite Column (강합성 중공 기둥의 내진 성능)

  • Han, Taek Hee;Kim, Jung Hun;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.215-226
    • /
    • 2008
  • A column test was performed for a hollow composite column to evaluate its seismic performance. The seismic performances of a hollow composite column and a reinforced concrete (RC) column were evaluated and compared by quasi-static tests. Lateral displacements and lateral loads of the column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, and damage indices were calculated from the recorded data. From the test results, the hollow composite column showed a seismic performance superior to the column in terms of double moment capacity, ultimate energy, and energy absorption.

Experimental and Numerical Investigation of Sliding Response of Unconstrained Objects to Base Excitations (바닥진동에 의한 비구속 물체의 거동파악 실험과 수치해석 전산프로그램의 개발)

  • Lee, Sang Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.463-469
    • /
    • 2014
  • Safety related devices unconstrained temporally in the process of operation of nuclear power plants could be damaged by the sliding during seismic activity. In this study sliding response of unconstrained objects to the base excitations is studied experimentally and analytically. In experiments static and dynamic tests to determine the coefficient of friction and the shaking table experiments to verify the sliding response of the analytic results were conducted. Numerical solutions by solving the nonlinear differential equations of motion governing sliding were found by the computer program using the step by step acceleration method. The exact solutions of the sliding response to the simple forms of base excitations were found to verify the computer program developed in this study. Relative displacement envelopes were suggested as a colliding criteria of the unconstrained objects.

A Study on the Earthquake Response Characteristics of Steel Frames with Metallic Damper (강재 댐퍼를 부착한 철골조의 지진응답특성에 관한 연구)

  • Lee, Seung-Jae;Park, Jae-Seong;Oh, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • The purpose of this study is to propose damper system which is easy to design, which can ensure against risks, and to verify earthquake response characteristics. For this study, the pseudo dynamic earthquake response tests carried out for steel frames with metallic damper. As a result, in case of using the metallic damper as a vibration control device proposed by this study, the damper having higher stiffness than main-structure turned to the state of plasticity by little displacement has been proved to be able to absorb earthquake energy.

Spacer Grid Assembly with Sliding Fuel Rod Support (삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.843-850
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a Pressurized Water Reactor (PWR). A primary design requirement is that the fuel rod integrity be maintained by the spacer grid assembly during the operation of the reactor. In this study, we suggested a new spacer grid assembly having a fuel rod support, which is capable of sliding when the fuel rod vibrates due to flow-induced vibrations in the reactor. By adjusting the relative displacement between the fuel rod and its support, the proposed design will help in reducing fuel rod fretting damage.

Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch (복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성)

  • Yoon, Hyun-Sung;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • Edge notched A16061-T6 aluminum was repaired with a GFRP composite patch as a function of the number of stacking, Damage progress of specimen for tension load has been monitored by acoustic emission(AE), AE energy rate, hit rate, amplitude, waveform and 1st peak frequency distribution were analyzed. Fracture processes were classified into Al cracking, Fiber breakage, Resin cracking and Delamination. Displacement of a specimen can be divided into Region I, II and ill according to acoustic emission characteristics. Region II where the patch itself was actually fractured was focused on to clarify the AE characteristics difference for the number of stacking.

Determination of Structural Performance Point Utilizing The Seismic Isolation Rubber Bearing Design Method (면진격리 고무베어링 설계법을 이용한 구조물의 성능점 예측)

  • 김창훈;좌동훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • The seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for determination of the performance point of structures in a simpler way, such an adaptation may be possible for the fact that a structural system under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The superiority of the proposed method to the state-of-the-practice approach is that the reasonably accurate performance point can be obtained without constructing the so-called acceleration displacement response spectrum required in application of capacity spectrum method. The validity of the proposed approach was verified by comparing the predicted values to the exact ones presented in the literature.